Reactivity of electrophilic chlorine atoms due to σ-holes: a mechanistic assessment of the chemical reduction of a trichloromethyl group by sulfur nucleophiles

2016 ◽  
Vol 18 (39) ◽  
pp. 27300-27307 ◽  
Author(s):  
Guillermo Caballero-García ◽  
Moisés Romero-Ortega ◽  
Joaquín Barroso-Flores

σ-Holes are shown to promote the electrophilic behavior of chlorine atoms in a trichloromethyl group when bound to an electron-withdrawing moiety.

2007 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.W. Kim ◽  
Y.H. Kim ◽  
H.G. Cha ◽  
D.K. Lee ◽  
Y.S. Kang

1990 ◽  
Vol 51 (C1) ◽  
pp. C1-781-C1-787
Author(s):  
B. BONVALOT ◽  
G. DHALENNE ◽  
F. MILLOT ◽  
A. REVCOLEVSCHI

2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


2019 ◽  
Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


Alloy Digest ◽  
1986 ◽  
Vol 35 (11) ◽  

Abstract ENPLATE NI-423 is a nickel-phosphorus alloy deposited by chemical reduction without electric current. It is deposited by a stable, relatively high-speed functional electroless nickel process that produces a low-stress coating with good ductility and excellent resistance to corrosion. Its many uses include equipment for chemicals and food, aerospace components, molds and electronic devices. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion and wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: Ni-343. Producer or source: Enthone Inc..


Alloy Digest ◽  
1986 ◽  
Vol 35 (4) ◽  

Abstract ELECTROLESS NICKEL is a nickel coating deposited by chemical reduction of nickel ions. The most widely used reducing agent is sodium hypophosphite. The thickness of the deposited coating is uniform over all areas of the work-piece that are in continuous contact with fresh plating solution. The process is applicable to a wide variety of metal and nonmetal substrates. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as heat treating and joining. Filing Code: Ni-332. Producer or source: Occidental Chemical Corporation.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


1996 ◽  
Vol 34 (10) ◽  
pp. 25-33 ◽  
Author(s):  
Cheng Jiayang ◽  
Makram T. Suidan ◽  
Albert D. Venosa

Abiotic reduction of 2,4-dinitrotoluene (DNT) in the presence of sulfide minerals has been investigated under anoxic conditions at 35°C. 2,4-DNT was abiotically reduced to 4-amino-2-nitrotoluene (4-A-2-NT) and 2-amino-4-nitrotoluene (2-A-4-NT) in the presence of high concentration of sulfide (0.84 mM). No abiotic reduction of 2,4-DNT was observed in the presence of low sulfide concentration (0.42 mM). The rate and the extent of the abiotic reduction of 2,4-DNT were increased with an increase in sulfide concentration. Sulfide served as an electron donor for the reduction of 2,4-DNT. The 2-nitro group was preferentially reduced, making the 2-A-4-NT:4-A-2-NT ratio in the final products 2:1. The addition of iron, nickel, and cobalt minerals significantly enhanced the abiotic reduction. The FeS, NiS, and CoS solids formed in the serum bottles catalyzed the reduction of 2,4-DNT preferentially to 4-A-2-NT. MnS and CuS solids also catalyzed the reduction of 2,4-DNT to 4-A-2-NT, but did not change the overall reduction of 2,4-DNT. However, the presence of calcium, zinc, and magnesium minerals impeded 2,4-DNT reduction. The calcium, zinc, and magnesium ions have a high affinity to sulfide, inactivating sulfide as an electron donor for the chemical reduction of 2,4-DNT.


2019 ◽  
Vol 25 (34) ◽  
pp. 3645-3663 ◽  
Author(s):  
Muhammad Ismail ◽  
Kalsoom Akhtar ◽  
M.I. Khan ◽  
Tahseen Kamal ◽  
Murad A. Khan ◽  
...  

: Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can’t degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.


Sign in / Sign up

Export Citation Format

Share Document