Influence of nanomedicine mechanical properties on tumor targeting delivery

2020 ◽  
Vol 49 (8) ◽  
pp. 2273-2290 ◽  
Author(s):  
Zheng Li ◽  
Chen Xiao ◽  
Tuying Yong ◽  
Zifu Li ◽  
Lu Gan ◽  
...  

This tutorial review summarizes the influence of nanomedicine mechanical properties on drug delivery efficiency, antitumor efficacy and safety.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 725
Author(s):  
Yuseon Shin ◽  
Patihul Husni ◽  
Kioh Kang ◽  
Dayoon Lee ◽  
Sehwa Lee ◽  
...  

The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.


2021 ◽  
Vol 22 ◽  
Author(s):  
Rui Wang ◽  
Xianyi Sha

: The emergence of nanoscale drug delivery systems provides new opportunities for targeting delivery of chemotherapeutic drugs and has achieved excellent results. In recent years, with the arising of the concept of intelligent drug delivery systems, the design and preparation of carriers have become more and more complicated, which is not conducive to clinical transformation. Researchers are gradually focusing on biomimetic nanoscale drug delivery systems, trying to combine the physicochemical properties of nanoscale carriers with the natural biological functions of endogenous substances, so as to boost tumor targeting delivery. In this article, we first classify and introduce biomimetic nanoscale drug delivery systems, and then emphasize their unique biological functions. The biomimetic nanoscale drug delivery systems have the advantages of simple preparation, powerful functions, and low immunogenicity, having a good application prospect.


2016 ◽  
Vol 1 (6) ◽  
pp. 480-487 ◽  
Author(s):  
Ye Tian ◽  
Ranran Guo ◽  
Yunfeng Jiao ◽  
Yangfei Sun ◽  
Shun Shen ◽  
...  

Transferrin-capped hollow mesoporous silica nanoparticles through disulfide linkages realize tumor-targeting delivery and glutathione-induced drug release.


Nanoscale ◽  
2020 ◽  
Vol 12 (36) ◽  
pp. 18965-18977 ◽  
Author(s):  
Ting-Wei Gu ◽  
Mao-Ze Wang ◽  
Jie Niu ◽  
Yang Chu ◽  
Ke-Ran Guo ◽  
...  

Transdermal drug delivery is favored in clinical therapy because of its ability to overcome the shortcomings of the first pass elimination of the liver caused by traditional oral administration and the irreversibility of the injection.


2019 ◽  
Vol 25 (37) ◽  
pp. 3917-3926
Author(s):  
Sajjad Molavipordanjani ◽  
Seyed Jalal Hosseinimehr

Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid and polymeric nanoparticles and their application in tumor targeting.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2018 ◽  
Vol 15 (5) ◽  
pp. 652-657 ◽  
Author(s):  
Ramachandran Deepika ◽  
Koyeli Girigoswami ◽  
Ramachandran Murugesan ◽  
Agnishwar Girigoswami

2011 ◽  
Vol 1 (1) ◽  
pp. 67-84
Author(s):  
Zhigang Hu ◽  
Fei Huo ◽  
Yi Zhang ◽  
Chunyang Chen ◽  
Kehua Tu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Sign in / Sign up

Export Citation Format

Share Document