Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster

2020 ◽  
Vol 11 (1) ◽  
pp. 524-533 ◽  
Author(s):  
Shengyang Chen ◽  
Qian Yang ◽  
Xuan Chen ◽  
Yongqi Tian ◽  
Zhiyu Liu ◽  
...  

Crimson snapper scale peptides (CSSPs) prepared from crimson snapper scales exhibited significant antioxidant activity in vitro and anti-aging effects in vivo on fat diet-induced high fat Drosophila melanogaster.

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1236
Author(s):  
Seon-Joo Park ◽  
Anshul Sharma ◽  
Hae-Jeung Lee

Amaranth (Amaranthus spp.) plant commonly refers to the sustainable food crop for the 21st century. The crop has witnessed significant attention in recent years due to its high nutritional value and agronomic advantages. It is a relatively well-balanced cosmopolitan food that is a protector against chronic diseases. Usually, the antioxidant activities of amaranth are held responsible for its defensive behavior. Antioxidant activity of plants, generally, is attributed to their phytochemical compounds. The current interest, however, lies in hydrolysates and bioactive peptides because of their numerous biological functions, including antioxidant effect. While the importance of bioactive peptides has been progressively recognized, an integrated review of recent studies on the antioxidant ability of amaranth species, especially their hydrolysates and peptides has not been generated. Hence, in this review, we summarize studies focused on the antioxidant capacity of amaranth renewal over the period 2015–2020. It starts with a background and overall image of the amaranth-related published reviews. The current research focusing on in vitro, in vivo, and chemical assays-based antioxidant activity of different amaranth species are addressed. Finally, the last segment includes the latest studies concerning free radical scavenging activity and metal chelation capacity of amaranth protein hydrolysates and bioactive peptides.


RSC Advances ◽  
2016 ◽  
Vol 6 (70) ◽  
pp. 65808-65815 ◽  
Author(s):  
Wei Song ◽  
Chen Song ◽  
Yujuan Shan ◽  
Weihong Lu ◽  
Jiliang Zhang ◽  
...  

In this paper, three Lactobacillus strains (L. coryniformis subsp. torquens T3, L. paracasei subsp. paracasei M5 and L. paracasei subsp. paracasei X12) isolated in our laboratory were investigated for antioxidant activity in vitro and in vivo.


Author(s):  
Walter Mdekera Iorjiim ◽  
Simeon Omale ◽  
Great David Bagu ◽  
Steven Samuel Gyang ◽  
Emmanuel Taiwo Alemika

Aim: The study was designed to investigate antioxidant, survivability,  fecundity, and locomotor activity of Moringa oleifera leaf (MOL) extract in Drosophila melanogaster. Materials and Methods: The study was conducted at the Africa Centre of Excellence in phytomedicine Research and Development (ACEPRD), University of Jos, Nigeria, in August 2019 - March 2020. In the first place, in vitro analysis of the antioxidant activity of extracts of M. oleifera in various solvents (Aqueous, Methanol-Aqueous co-solvent (80 % v/v) and n-Hexane) were evaluated using DPPH (1,1-Diphenyl-2-Picrylhydrazyl) assay. Based on the in vitro result, the methanol extract with the best free radical scavenging activity was used in graded doses for conducting the in vivo studies, and the observations were recorded. Distilled water (1000 µL) was used alone in 10 g fly food (as negative control) or as a solvent to dissolve MOL extract or ascorbic acid (positive control) separately before mixing with the fly food.  Statistical significance was taken at P<0.05 Results: The methanol extract of M. oleifera leaf (MEMOL) showed significantly (P<0.05) higher free radical scavenging ability (IC50 = 60 µg/ml) compared with the aqueous (IC50 = 100 µg/ml) and n-hexane (IC50 = 250 µg/ml) extracts respectively. The median lethal dose (LD50) of MEMOL was >2000 mg. Supplementation with MEMOL non-significantly (P>0.05) improved movement, significantly (P<0.05) increased survivability, fecundity, and total thiol level. The activities of glutathione-S-transferase (GST) and catalase (CAT) significantly (P<0.05) increased. The superoxide dismutase (SOD) activity non-significantly (P>0.05) decreased, while malondialdehyde (MDA) concentration decreased significantly (P<0.05) compared with controls, respectively. Conclusion:  In vitro study suggested better antioxidant activity of MEMOL. In vivo study also revealed that MEMOL was relatively safe in D. melanogaster, supported by high LD50, increased survivability, fecundity, locomotor ability, antioxidant enzyme activities, total thiol level, along with a concomitant decrease in MDA content.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2018 ◽  
Vol 18 (7) ◽  
pp. 985-992 ◽  
Author(s):  
Aysegul Hanikoglu ◽  
Ertan Kucuksayan ◽  
Rana Cagla Akduman ◽  
Tomris Ozben

This systematic review aims to elucidate the role of melatonin (N-acetyl-5-metoxy-tryptamine) (MLT) in the prevention and treatment of cancer. MLT is a pineal gland secretory product, an evolutionarily highly conserved molecule; it is also an antioxidant and an impressive protector of mitochondrial bioenergetic activity. MLT is characterized by an ample range of activities, modulating the physiology and molecular biology of the cell. Its physiological functions relate principally to the interaction of G Protein-Coupled MT1 and MT2 trans-membrane receptors (GPCRs), a family of guanidine triphosphate binding proteins. MLT has been demonstrated to suppress the growth of various tumours both, in vivo and in vitro. In this review, we analyze in depth, the antioxidant activity of melatonin, aiming to illustrate the cancer treatment potential of the molecule, by limiting or reversing the changes occurring during cancer development and growth.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 952
Author(s):  
Małgorzata Chrząszcz ◽  
Barbara Krzemińska ◽  
Rafał Celiński ◽  
Katarzyna Szewczyk

The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.


2021 ◽  
Vol 19 (1) ◽  
pp. 228-237
Author(s):  
Yulong Zhang ◽  
Xueying Chen ◽  
Ping Hu ◽  
Qianwei Liao ◽  
Yong Luo ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2543
Author(s):  
Ruidong Ni ◽  
Suzeeta Bhandari ◽  
Perry R. Mitchell ◽  
Gabriela Suarez ◽  
Neel B. Patel ◽  
...  

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2198
Author(s):  
Marcos Mateo-Fernández ◽  
Fernando Valenzuela-Gómez ◽  
Rafael Font ◽  
Mercedes Del Río-Celestino ◽  
Tania Merinas-Amo ◽  
...  

Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.


Sign in / Sign up

Export Citation Format

Share Document