Tailoring structural features and functions of fullerene rod crystals by a ferrocene-modified fullerene derivative

CrystEngComm ◽  
2020 ◽  
Vol 22 (38) ◽  
pp. 6287-6294
Author(s):  
Bohong Jiang ◽  
Qin Tang ◽  
Wenli Zhao ◽  
Jiao Sun ◽  
Rong An ◽  
...  

Effective functional intercalation and facile structural manipulation of fullerene crystals could be achieved by ferrocene-modified fullerene based on the liquid–liquid interfacial precipitation process.

2012 ◽  
Vol 509 ◽  
pp. 22-27 ◽  
Author(s):  
Hui Ping Ren ◽  
Hai Yan Wang ◽  
Zong Chang Liu

The precipitation of copper during aging at 600oC in high-purity Fe-Cu alloy was examined by means of transmission electron microscopy (TEM).Nano-scale copper-rich clusters with a B2-like structure were observed during heat treatment. These micro structural features play an important role in precipitation strengthening. In addition, the precipitation process has been analyzed in terms of the evolution of microstructure by a Monte Carlo method. A description of the coherent precipitation of copper in iron, based on a vacancy diffusion mechanism, thermally activated jump frequencies and cohesive energy is discussed in order to deal with simultaneous precipitation of metastable and stable phases in Cu-containing steel during aging. This analysis gives an estimation of the precipitation dynamics, as well as the evolution of Cu precipitates across a wide range of temperatures.


2020 ◽  
Vol 10 (5) ◽  
pp. 1655 ◽  
Author(s):  
Faiez Hentati ◽  
Cédric Delattre ◽  
Christine Gardarin ◽  
Jacques Desbrières ◽  
Didier Le Cerf ◽  
...  

A novel sulfated xylogalactan-rich fraction (JSP for J. adhaerens Sulfated Polysaccharide) was extracted from the red Tunisian seaweed Jania adhaerens. JSP was purified using an alcoholic precipitation process and characterized by Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR), high-pressure size exclusion chromatography (HPSEC) with a multi-angle laser light scattering (MALLS), gas chromatography coupled to mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR, 1D and 2D). JSP was then evaluated regarding its physicochemical and rheological properties. Results showed that JSP was mainly composed of an agar-like xylogalactan sharing the general characteristics of corallinans. The structure of JSP was mainly composed of agaran disaccharidic repeating units (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n and (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n, mainly substituted on O-6 of (1,3)-β-d-Galp residues by β-xylosyl side chains, and less with sulfate or methoxy groups. (1,4)-α-l-Galp residues were also substituted by methoxy and/or sulfate groups in the O-2 and O-3 positions. Mass-average and number-average molecular masses (Mw) and (Mn), intrinsic viscosity ([η]) and hydrodynamic radius (Rh) for JSP were, respectively, 8.0 × 105 g/mol, 1.0 × 105 g/mol, 76 mL/g and 16.8 nm, showing a flexible random coil conformation in solution. The critical overlap concentration C* of JSP was evaluated at 7.5 g/L using the Williamson model. In the semi-diluted regime, JSP solutions displayed a shear-thinning behavior with a great viscoelasticity character influenced by temperature and monovalent salts. The flow characteristics of JSP were described by the Ostwald model.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
N. M. P. Low ◽  
L. E. Brosselard

There has been considerable interest over the past several years in materials capable of converting infrared radiation to visible light by means of sequential excitation in two or more steps. Several rare-earth trifluorides (LaF3, YF3, GdF3, and LuF3) containing a small amount of other trivalent rare-earth ions (Yb3+ and Er3+, or Ho3+, or Tm3+) have been found to exhibit such phenomenon. The methods of preparation of these rare-earth fluorides in the crystalline solid form generally involve a co-precipitation process and a subsequent solid state reaction at elevated temperatures. This investigation was undertaken to examine the morphological features of both the precipitated and the thermally treated fluoride powders by both transmission and scanning electron microscopy.Rare-earth oxides of stoichiometric composition were dissolved in nitric acid and the mixed rare-earth fluoride was then coprecipitated out as fine granules by the addition of excess hydrofluoric acid. The precipitated rare-earth fluorides were washed with water, separated from the aqueous solution, and oven-dried.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
R.M. Glaeser ◽  
S.B. Hayward

Highly ordered or crystalline biological macromolecules become severely damaged and structurally disordered after a brief electron exposure. Evidence that damage and structural disorder are occurring is clearly given by the fading and eventual disappearance of the specimen's electron diffraction pattern. The fading and disappearance of sharp diffraction spots implies a corresponding disappearance of periodic structural features in the specimen. By the same token, there is a oneto- one correspondence between the disappearance of the crystalline diffraction pattern and the disappearance of reproducible structural information that can be observed in the images of identical unit cells of the object structure. The electron exposures that result in a significant decrease in the diffraction intensity will depend somewhat upon the resolution (Bragg spacing) involved, and can vary considerably with the chemical makeup and composition of the specimen material.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
P. S. Kotval ◽  
C. J. Dewit

The structure of Ta2O5 has been described in the literature in several different crystallographic forms with varying unit cell lattice parameters. Earlier studies on films of Ta2O5 produced by anodization of tantalum have revealed structural features which are not consistent with the parameters of “bulk” Ta2O5 crystalsFilms of Ta2O5 were prepared by anodizing a well-polished surface of pure tantalum sheet. The anodic films were floated off in distilled water, collected on grids, dried and directly examined in the electron microscope. In all cases the films were found to exhibit diffraction patterns representative of an amorphous structure. Using beam heating in the electron microscope, recrystallization of the amorphous films can be accomplished as shown in Fig. 1. As suggested by earlier work, the recrystallized regions exhibit diffraction patterns which consist of hexagonal arrays of main spots together with subsidiary rows of super lattice spots which develop as recrystallization progresses (Figs. 2a and b).


Author(s):  
Bert Ph. M. Menco ◽  
Ido F. Menco ◽  
Frans L.T. Verdonk

Previously we presented an extensive study of the distributions of intramembranous particles of structures in apical surfaces of nasal olfactory and respiratory epithelia of the Sprague-Dawley rat. For the same structures these distributions were compared in samples which were i) chemically fixed and cryo-protected with glycerol before cryo-fixation, after excision, and ii)ultra-rapidly frozen by means of the slam-freezing method. Since a three-dimensional presentation markedly improves visualization of structural features micrographs were presented as stereopairs. Two exposures were made by tiling the sample stage of the electron microscope 6° in either direction with an eucentric goniometer. The negatives (Agfa Pan 25 Professional) were reversed with Kodak Technical Pan Film 2415 developed in D76 1:1. The prints were made from these reversed negatives. As an example tight-junctional features of an olfactory supporting cell in a region where this cell conjoined with two other cells are presented (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document