Revitalising sodium–sulfur batteries for non-high-temperature operation: a crucial review

2020 ◽  
Vol 13 (11) ◽  
pp. 3848-3879
Author(s):  
Yizhou Wang ◽  
Dong Zhou ◽  
Veronica Palomares ◽  
Devaraj Shanmukaraj ◽  
Bing Sun ◽  
...  

We review the working mechanisms, opportunity and challenges of intermediate-temperature and room-temperature sodium–sulfur batteries for low-cost energy storage.

Author(s):  
Xiang Long Huang ◽  
Yunxiao Wang ◽  
Shulei Chou ◽  
Shi Xue Dou ◽  
Zhiming M. Wang

Room-temperature sodium-sulfur (RT Na-S) batteries constitute an extremely competitive electrochemical energy storage system, owing to their abundant natural resources, low cost, and outstanding energy density, which could potentially overcome the...


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1535
Author(s):  
Yanjie Wang ◽  
Yingjie Zhang ◽  
Hongyu Cheng ◽  
Zhicong Ni ◽  
Ying Wang ◽  
...  

Lithium metal batteries have achieved large-scale application, but still have limitations such as poor safety performance and high cost, and limited lithium resources limit the production of lithium batteries. The construction of these devices is also hampered by limited lithium supplies. Therefore, it is particularly important to find alternative metals for lithium replacement. Sodium has the properties of rich in content, low cost and ability to provide high voltage, which makes it an ideal substitute for lithium. Sulfur-based materials have attributes of high energy density, high theoretical specific capacity and are easily oxidized. They may be used as cathodes matched with sodium anodes to form a sodium-sulfur battery. Traditional sodium-sulfur batteries are used at a temperature of about 300 °C. In order to solve problems associated with flammability, explosiveness and energy loss caused by high-temperature use conditions, most research is now focused on the development of room temperature sodium-sulfur batteries. Regardless of safety performance or energy storage performance, room temperature sodium-sulfur batteries have great potential as next-generation secondary batteries. This article summarizes the working principle and existing problems for room temperature sodium-sulfur battery, and summarizes the methods necessary to solve key scientific problems to improve the comprehensive energy storage performance of sodium-sulfur battery from four aspects: cathode, anode, electrolyte and separator.


2014 ◽  
Vol 778-780 ◽  
pp. 903-906 ◽  
Author(s):  
Kevin Matocha ◽  
Kiran Chatty ◽  
Sujit Banerjee ◽  
Larry B. Rowland

We report a 1700V, 5.5mΩ-cm24H-SiC DMOSFET capable of 225°C operation. The specific on-resistance of the DMOSFET designed for 1200V applications is 8.8mΩ-cm2at 225°C, an increase of only 60% compared to the room temperature value. The low specific on-resistance at high temperatures enables a smaller die size for high temperature operation. Under a negative gate bias temperature stress (BTS) at VGS=-15 V at 225°C for 20 minutes, the devices show a threshold voltage shift of ΔVTH=-0.25 V demonstrating one of the key device reliability requirements for high temperature operation.


2016 ◽  
Author(s):  
Mitchell Shinn ◽  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Richard Wirz

Currently, concentrated solar power (CSP) plants utilize thermal energy storage (TES) in order to store excess energy so that it can later be dispatched during periods of intermittency or during times of high energy demand. Elemental sulfur is a promising candidate storage fluid for high temperature TES systems due to its high thermal mass, moderate vapor pressure, high thermal stability, and low cost. The objective of this paper is to investigate the behavior of encapsulated sulfur in a shell and tube configuration. An experimentally validated, transient, two-dimensional numerical model of the shell and tube TES system is presented. Initial results from both experimental and numerical analysis show high heat transfer performance of sulfur. The numerical model is then used to analyze the dynamic response of the elemental sulfur based TES system for multiple charging and discharging cycles. A sensitivity analysis is performed to analyze the effect of geometry (system length), cutoff temperature, and heat transfer fluid on the overall utilization of energy stored within this system. Overall, this paper demonstrates a systematic parametric study of a novel low cost, high performance TES system based on elemental sulfur as the storage fluid that can be utilized for different high temperature applications.


Nano Energy ◽  
2017 ◽  
Vol 32 ◽  
pp. 59-66 ◽  
Author(s):  
Zhe Qiang ◽  
Yu-Ming Chen ◽  
Yanfeng Xia ◽  
Wenfeng Liang ◽  
Yu Zhu ◽  
...  

Science ◽  
2018 ◽  
Vol 362 (6419) ◽  
pp. 1131-1134 ◽  
Author(s):  
Aristide Gumyusenge ◽  
Dung T. Tran ◽  
Xuyi Luo ◽  
Gregory M. Pitch ◽  
Yan Zhao ◽  
...  

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Hiroshi Kambayashi ◽  
Yuki Niiyama ◽  
Takehiko Nomura ◽  
Masayuki Iwami ◽  
yoshihiro Satoh ◽  
...  

AbstractWe have demonstrated enhancement-mode n-channel gallium nitride (GaN) MOSFETs on Si (111) substrates with high-temperature operation up to 300 °C. The GaN MOSFETs have good normally-off operation with the threshold voltages of +2.7 V. The MOSFET exhibits good output characteristics from room temperature to 300 °C. The leakage current at 300°C is less than 100 pA/mm at the drain-to-source voltage of 0.1 V. The on-state resistance of MOSFET at 300°C is about 1.5 times as high as that at room temperature. These results indicate that GaN MOSFET is suitable for high-temperature operation compared with AlGaN/GaN HFET.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1585 ◽  
Author(s):  
Jianhui Zhu ◽  
Amr Abdelkader ◽  
Denisa Demko ◽  
Libo Deng ◽  
Peixin Zhang ◽  
...  

Room temperature sodium-sulfur batteries have been considered to be potential candidates for future energy storage devices because of their low cost, abundance, and high performance. The sluggish sulfur reaction and the “shuttle effect” are among the main problems that hinder the commercial utilization of room temperature sodium-sulfur batteries. In this study, the performance of a hybrid that was based on nitrogen (N)-doped carbon nanospheres loaded with a meagre amount of Fe ions (0.14 at.%) was investigated in the sodium-sulfur battery. The Fe ions accelerated the conversion of polysulfides and provided a stronger interaction with soluble polysulfides. The Fe-carbon nanospheres hybrid delivered a reversible capacity of 359 mAh·g−1 at a current density of 0.1 A·g−1 and retained a capacity of 180 mAh·g−1 at 1 A·g−1, after 200 cycles. These results, combined with the excellent rate performance, suggest that Fe ions, even at low loading, are able to improve the electrocatalytic effect of carbon nanostructures significantly. In addition to Na-S batteries, the new hybrid is anticipated to be a strong candidate for other energy storage and conversion applications such as other metal-sulfur batteries and metal-air batteries.


2005 ◽  
Vol 871 ◽  
Author(s):  
Tsuyoshi Sekitani ◽  
Shingo Iba ◽  
Yusaku Kato ◽  
Yoshiaki Noguchi ◽  
Takao Someya ◽  
...  

AbstractWe have fabricated pentacene field-effect transistors (FETs) on polyimide-sheet films with polyimide gate dielectric layers and parylene encapsulation layer, and investigated the high-temperature performance. It is found that the mobility of encapsulated FETs is enhanced from 0.5 to 0.8 cm2/Vs when the device is heated from room temperature to 160°C under light-shielding nitrogen environment. Furthermore, after the removal of annealing temperatures up to 160°C, the transistor characteristic of mobility and on/off current ratio show no significant changes, demonstration the excellent thermal stability of the present organic FETs.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001124-001130
Author(s):  
K. Brinkfeldt ◽  
T. Åklint ◽  
C. Sandberg ◽  
P. Johander ◽  
D. Andersson

Power transistors based on silicon carbide (SiC) are now commercially available. They have a higher efficiency and higher voltage blocking capabilities than conventional silicon devices. The wide-band gap and chemical inertness of SiC makes it suitable to high temperature operation. However, there is a need for new packaging for power transistors that can operate in higher temperatures. We have developed a package based on ceramics and silver for high temperature operation of SiC power transistors. Three types of SiC devices from different manufacturers are packaged and tested in room temperature. Though the devices were still functional after the packaging process, their performance seem to have degraded. This could be a result of the high temperature packaging process and the measurement setup. FEM simulations are also performed to investigate the thermo-mechanical behavior of the package. The target operating temperature of the package is 400 °C. Modeling show stress concentrations at the corners of the device chip and suggests that this stress is decreased if the substrate metallization is changed from copper to silver.


Sign in / Sign up

Export Citation Format

Share Document