Fluorescent probes for imaging of bioactive species in subcellular organelle

2021 ◽  
Author(s):  
Sumit Kumar Pramanik ◽  
Amitava Das

Luminescent molecular probes and nanoscale materials have become important tools in biosensing and bioimaging applications because of their high sensitivity, fast response, specificity, and methodological simplicity. In recent years, there...

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3267 ◽  
Author(s):  
Sahoo ◽  
Crisponi

Iron(III) is well-known to play a vital role in a variety of metabolic processes in almost all living systems, including the human body. However, the excess or deficiency of Fe3+ from the normal permissible limit can cause serious health problems. Therefore, novel analytical methods are developed for the simple, direct, and cost-effective monitoring of Fe3+ concentration in various environmental and biological samples. Because of the high selectivity and sensitivity, fast response time, and simplicity, the fluorescent-based molecular probes have been developed extensively in the past few decades to detect Fe3+. This review was narrated to summarize the Fe3+-selective fluorescent probes that show fluorescence enhancement (turn-on) and ratiometric response. The Fe3+ sensing ability, mechanisms along with the analytical novelties of recently reported 77 fluorescent probes are discussed.


2018 ◽  
Vol 10 (33) ◽  
pp. 4079-4084 ◽  
Author(s):  
Xilang Jin ◽  
Xianglong Wu ◽  
Pu Xie ◽  
Sha Liu ◽  
Jie Wu ◽  
...  

The probe exhibited high sensitivity, selectivity, and fast response for real-time detection of H2S in vivo.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 648
Author(s):  
Aijie Liang ◽  
Jingyuan Ming ◽  
Wenguo Zhu ◽  
Heyuan Guan ◽  
Xinyang Han ◽  
...  

Breath monitoring is significant in assessing human body conditions, such as cardiac and pulmonary symptoms. Optical fiber-based sensors have attracted much attention since they are immune to electromagnetic radiation, thus are safe for patients. Here, a microfiber (MF) humidity sensor is fabricated by coating tin disulfide (SnS2) nanosheets onto the surface of MF. The small diameter (~8 μm) and the long length (~5 mm) of the MF promise strong interaction between guiding light and SnS2. Thus, a small variation in the relative humidity (RH) will lead to a large change in optical transmitted power. A high RH sensitivity of 0.57 dB/%RH is therefore achieved. The response and recovery times are estimated to be 0.08 and 0.28 s, respectively. The high sensitivity and fast response speed enable our SnS2-MF sensor to monitor human breath in real time.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3575
Author(s):  
Shenggang Wang ◽  
Yue Huang ◽  
Xiangming Guan

Thiols play vital and irreplaceable roles in the biological system. Abnormality of thiol levels has been linked with various diseases and biological disorders. Thiols are known to distribute unevenly and change dynamically in the biological system. Methods that can determine thiols’ concentration and distribution in live cells are in high demand. In the last two decades, fluorescent probes have emerged as a powerful tool for achieving that goal for the simplicity, high sensitivity, and capability of visualizing the analytes in live cells in a non-invasive way. They also enable the determination of intracellular distribution and dynamitic movement of thiols in the intact native environments. This review focuses on some of the major strategies/mechanisms being used for detecting GSH, Cys/Hcy, and other thiols in live cells via fluorescent probes, and how they are applied at the cellular and subcellular levels. The sensing mechanisms (for GSH and Cys/Hcy) and bio-applications of the probes are illustrated followed by a summary of probes for selectively detecting cellular and subcellular thiols.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1915
Author(s):  
Shenawar Ali Khan ◽  
Muhammad Saqib ◽  
Muhammad Muqeet Rehman ◽  
Hafiz Mohammad Mutee Ur Rehman ◽  
Sheik Abdur Rahman ◽  
...  

A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8–98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


2020 ◽  
Vol 39 (1) ◽  
pp. 209-221
Author(s):  
Jiafeng Wan ◽  
Xiaoyuan Zhang ◽  
Kai Zhang ◽  
Zhiqiang Su

Abstract In recent years, nanomaterials have attracted lots of attention from researchers due to their unique properties. Nanometer fluorescent materials, such as organic dyes, semiconductor quantum dots (QDs), metal nano-clusters (MNCs), carbon dots (CDs), etc., are widely used in biological imaging due to their high sensitivity, short response time, and excellent accuracy. Nanometer fluorescent probes can not only perform in vitro imaging of organisms but also achieve in vivo imaging. This provides medical staff with great convenience in cancer treatment. Combined with contemporary medical methods, faster and more effective treatment of cancer is achievable. This article explains the response mechanism of three-nanometer fluorescent probes: the principle of induced electron transfer (PET), the principle of fluorescence resonance energy transfer (FRET), and the principle of intramolecular charge transfer (ICT), showing the semiconductor QDs, precious MNCs, and CDs. The excellent performance of the three kinds of nano fluorescent materials in biological imaging is highlighted, and the application of these three kinds of nano fluorescent probes in targeted biological imaging is also introduced. Nanometer fluorescent materials will show their significance in the field of biomedicine.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


2016 ◽  
Vol 680 ◽  
pp. 208-211
Author(s):  
Lian Lian Wu ◽  
Qiang Li ◽  
Dan Yu Jiang ◽  
Jin Feng Xia

In this paper, La0.65Sr0.35MnO3 (LSM) oxide powder with ultrafine structure has been synthesized by self-propagating combustion method. The powders were characterized by X-ray diffraction, scanning electron microscopy and laser size analysis. Compared to the powders prepared by traditional solid-phase method, the grain size of powders prepared by self-propagating combustion method is relatively small and uniform. Starting from ultrafine LSM powders, sensing electrode (SE) for NO2 mixed-potential sensors based on yttria-stablized zirconia (YSZ) was fabricated. As-obtained NO2 sensor displays fast response and high sensitivity (25.4mV/decade). The response values of the sensor have good linear relationship with the logarithm of NO2 concentration varying from 30ppm to 500ppm.Keywords:Self-propagating combustion method; La0.65Sr0.35MnO3; NOx sensor; YSZ


Sign in / Sign up

Export Citation Format

Share Document