scholarly journals Noncovalent functionalization of Ti3C2TX using cationic porphyrins with enhanced stability against oxidation

Author(s):  
Shameel Thurakkal ◽  
Xiaoyan Zhang

Ti3C2TX, as the most explored MXene, is a rising star among 2D materials due to their astonishing physicochemical properties. However, its practical applications remain extremely challenging because of chemical degradation...

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1150
Author(s):  
Aigul S. Istomina ◽  
Tatyana V. Yaroslavtseva ◽  
Olga G. Reznitskikh ◽  
Ruslan R. Kayumov ◽  
Lyubov V. Shmygleva ◽  
...  

The use of dipolar aprotic solvents to swell lithiated Nafion ionomer membranes simultaneously serving as electrolyte and separator is of great interest for lithium battery applications. This work attempts to gain an insight into the physicochemical nature of a Li-Nafion ionomer material whose phase-separated nanostructure has been enhanced with a binary plasticiser comprising non-volatile high-boiling ethylene carbonate (EC) and sulfolane (SL). Gravimetric studies evaluating the influence both of mixing temperature (25 to 80 °C) and plasticiser composition (EC/SL ratio) on the solvent uptake of Li-Nafion revealed a hysteresis between heating and cooling modes. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the saturation of a Nafion membrane with such a plasticiser led to a re-organisation of its amorphous structure, with crystalline regions remaining practically unchanged. Regardless of mixing temperature, the preservation of crystallites upon swelling is critical due to ionomer crosslinking provided by crystalline regions, which ensures membrane integrity even at very high solvent uptake (≈200% at a mixing temperature of 80 °C). The physicochemical properties of a swollen membrane have much in common with those of a chemically crosslinked polymer gel. The conductivity of ≈10−4 S cm−1 demonstrated by Li-Nafion membranes saturated with EC/SL at room temperature is promising for various practical applications.


Langmuir ◽  
2018 ◽  
Vol 34 (8) ◽  
pp. 2900-2900 ◽  
Author(s):  
Tyson C. Davis ◽  
Jae Jin Bang ◽  
Jacob T. Brooks ◽  
David G. McMillan ◽  
Shelley A. Claridge

2019 ◽  
Vol 7 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Tingting Zhong ◽  
Xiaoyong Li ◽  
Menghao Wu ◽  
Jun-Ming Liu

Abstract Multiferroics are rare in nature due to the mutual exclusive origins of magnetism and ferroelectricity. The simultaneous coexistence of robust magnetism/ferroelectricity and strong magnetoelectric coupling in single multiferroics is hitherto unreported, which may also be attributed to their potential conflictions. In this paper, we show the first-principles evidence of such desired coexistence in ultrathin-layer CuCrS2 and CuCrSe2. The vertical ferroelectricity is neither induced by an empty d shell nor spin-driven, giving rise to an alternative possibility of resolving those intrinsic exclusions and contradictions. Compared with their bulk phases, the ferromagnetism in the thin-layer structures (two–six layers) can be greatly stabilized due to the enhanced carrier density and orbital shifting by vertical polarization, and the Curie temperatures of both ferromagnetism and ferroelectricity can be above room temperature. Moreover, a considerable net magnetization can be reversed upon ferroelectric switching, where the change in spin-resolved band structure also renders efficient ‘magnetic reading + electrical writing’. The thickness-different layers may even exhibit diversified types of magnetoelectric coupling, which both enriches the physics of multiferroics and facilitates their practical applications.


Author(s):  
Ali Nikoomanzar ◽  
Nicholas Chim ◽  
Eric J. Yik ◽  
John C. Chaput

Abstract DNA polymerases play a central role in biology by transferring genetic information from one generation to the next during cell division. Harnessing the power of these enzymes in the laboratory has fueled an increase in biomedical applications that involve the synthesis, amplification, and sequencing of DNA. However, the high substrate specificity exhibited by most naturally occurring DNA polymerases often precludes their use in practical applications that require modified substrates. Moving beyond natural genetic polymers requires sophisticated enzyme-engineering technologies that can be used to direct the evolution of engineered polymerases that function with tailor-made activities. Such efforts are expected to uniquely drive emerging applications in synthetic biology by enabling the synthesis, replication, and evolution of synthetic genetic polymers with new physicochemical properties.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 297 ◽  
Author(s):  
Jin-Ho Lee ◽  
Soo-jeong Park ◽  
Jeong-Woo Choi

Graphene, a single atom thick layer of two-dimensional closely packed honeycomb carbon lattice, and its derivatives have attracted much attention in the field of biomedical, due to its unique physicochemical properties. The valuable physicochemical properties, such as high surface area, excellent electrical conductivity, remarkable biocompatibility and ease of surface functionalization have shown great potentials in the applications of graphene-based bioelectronics devices, including electrochemical biosensors for biomarker analysis. In this review, we will provide a selective overview of recent advances on synthesis methods of graphene and its derivatives, as well as its application to electrochemical biosensor development. We believe the topics discussed here are useful, and able to provide a guideline in the development of novel graphene and on graphene-like 2-dimensional (2D) materials based biosensors in the future.


2020 ◽  
Vol 6 (37) ◽  
pp. eabb8431
Author(s):  
Sergei Lopatin ◽  
Areej Aljarb ◽  
Vladimir Roddatis ◽  
Tobias Meyer ◽  
Yi Wan ◽  
...  

High-resolution scanning transmission electron microscopy (HR-STEM) with spherical aberration correction enables researchers to peer into two-dimensional (2D) materials and correlate the material properties with those of single atoms. The maximum intensity of corrected electron beam is confined in the area having sub-angstrom size. Meanwhile, the residual threefold astigmatism of the electron probe implies a triangular shape distribution of the intensity, whereas its tails overlap and thus interact with several atomic species simultaneously. The result is the resonant modulation of contrast that interferes the determination of phase transition of 2D materials. Here, we theoretically reveal and experimentally determine the origin of resonant modulation of contrast and its unintended impact on violating the power-law dependence of contrast on coordination modes between transition metal and chalcogenide atoms. The finding illuminates the correlation between atomic contrast, spatially inequivalent chalcogenide orientation, and residual threefold astigmatism on determining the atomic structure of emerging 2D materials.


Nanophotonics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 2017-2032 ◽  
Author(s):  
Chitraleema Chakraborty ◽  
Nick Vamivakas ◽  
Dirk Englund

AbstractTwo-dimensional (2D) materials are being actively researched due to their exotic electronic and optical properties, including a layer-dependent bandgap, a strong exciton binding energy, and a direct optical access to electron valley index in momentum space. Recently, it was discovered that 2D materials with bandgaps could host quantum emitters with exceptional brightness, spectral tunability, and, in some cases, also spin properties. This review considers the recent progress in the experimental and theoretical understanding of these localized defect-like emitters in a variety of 2D materials as well as the future advantages and challenges on the path toward practical applications.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1192
Author(s):  
Zixin Xiong ◽  
Lei Zhong ◽  
Haotian Wang ◽  
Xiaoyan Li

Since the success of monolayer graphene exfoliation, two-dimensional (2D) materials have been extensively studied due to their unique structures and unprecedented properties. Among these fascinating studies, the most predominant focus has been on their atomic structures, defects, and mechanical behaviors and properties, which serve as the basis for the practical applications of 2D materials. In this review, we first highlight the atomic structures of various 2D materials and the structural and energy features of some common defects. We then summarize the recent advances made in experimental, computational, and theoretical studies on the mechanical properties and behaviors of 2D materials. We mainly emphasized the underlying deformation and fracture mechanisms and the influences of various defects on mechanical behaviors and properties, which boost the emergence and development of topological design and defect engineering. We also further introduce the piezoelectric and flexoelectric behaviors of specific 2D materials to address the coupling between mechanical and electronic properties in 2D materials and the interactions between 2D crystals and substrates or between different 2D monolayers in heterostructures. Finally, we provide a perspective and outlook for future studies on the mechanical behaviors and properties of 2D materials.


Sign in / Sign up

Export Citation Format

Share Document