scholarly journals Zein as a versatile biopolymer: different shapes for different biomedical applications

RSC Advances ◽  
2021 ◽  
Vol 11 (62) ◽  
pp. 39004-39026
Author(s):  
Silvia Tortorella ◽  
Mirko Maturi ◽  
Veronica Vetri Buratti ◽  
Giulia Vozzolo ◽  
Erica Locatelli ◽  
...  

Zein a versatile biomaterial in the biomedical field. Easy to chemically functionalize with good emulsification properties, can be employed in drug delivery, fabrication of bioactive membranes and 3D scaffolds for tissue regeneration.

2021 ◽  
Vol 22 (23) ◽  
pp. 12662
Author(s):  
Sara La Manna ◽  
Concetta Di Natale ◽  
Valentina Onesto ◽  
Daniela Marasco

Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure’s stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1631
Author(s):  
Mariangela Guastaferro ◽  
Ernesto Reverchon ◽  
Lucia Baldino

A comparative analysis concerning bio-based gels production, to be used for tissue regeneration, has been performed in this review. These gels are generally applied as scaffolds in the biomedical field, thanks to their morphology, low cytotoxicity, and high biocompatibility. Focusing on the time interval 2015–2020, the production of 3D scaffolds of alginate, chitosan and agarose, for skin and bone regeneration, has mainly been investigated. Traditional techniques are critically reviewed to understand their limitations and how supercritical CO2-assisted processes could overcome these drawbacks. In particular, even if freeze-drying represents the most widespread drying technique used to produce polysaccharide-based cryogels, supercritical CO2-assisted drying effectively allows preservation of the nanoporous aerogel structure and removes the organic solvent used for gel preparation. These characteristics are essential for cell adhesion and proliferation.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


Author(s):  
A. Kiani ◽  
N. J. Lakhkar ◽  
V. Salih ◽  
M. E. Smith ◽  
J. V. Hanna ◽  
...  

The use of biomaterials has revolutionized the biomedical field and has received substantial attention in the last two decades. Among the various types of biomaterials, phosphate glasses have generated great interest on account of their remarkable bioactivity and favourable physical properties for various biomedical applications relating to both hard and soft tissue regeneration. This review paper focuses mainly on the development of titanium-containing phosphate-based glasses and presents an overview of the structural and physical properties. The effect of titanium incorporation on the glassy network is to introduce favourable properties. The biocompatibility of these glasses is described along with recent developments in processing methodologies, and the potential of Ti-containing phosphate-based glasses as a bone substitute material is explored.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Haifeng Liu ◽  
Xili Ding ◽  
Gang Zhou ◽  
Ping Li ◽  
Xing Wei ◽  
...  

Electrospinning is a method in which materials in solution are formed into nano- and micro-sized continuous fibers. Recent interest in this technique stems from both the topical nature of nanoscale material fabrication and the considerable potential for use of these nanoscale fibres in a range of applications including, amongst others, a range of biomedical applications processes such as drug delivery and the use of scaffolds to provide a framework for tissue regeneration in both soft and hard tissue applications systems. The objectives of this review are to describe the theory behind the technique, examine the effect of changing the process parameters on fiber morphology, and discuss the application and impact of electrospinning on the fields of vascular, neural, bone, cartilage, and tendon/ligament tissue engineering.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5912
Author(s):  
Jie Xu ◽  
Danfeng Xu ◽  
Xuan Xuan ◽  
Huacheng He

A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.


2021 ◽  
Vol 8 (6) ◽  
pp. 13-21
Author(s):  
Odia Osemwegie ◽  
Lihua Lou ◽  
Ernest Smith ◽  
Seshadri Ramkumar

Nanofiber substrates have been used for various biomedical applications, including tissue regeneration, drug delivery, and in-vitro cell culture. However, despite the high volume of studies in this field, current clinical applications remain minimal. Innovations for their applications continuously generate exciting prospects. In this review, we discuss some of these novel innovations and identify critical factors to consider before their adoption for biomedical applications.


2018 ◽  
pp. 1424-1447
Author(s):  
Irshad Ahmad Wani

Magnetic nanoparticles due to their unique magnetic phenomenon, are gaining immense interest due to the utilization of these properties for a wide variety of applications in various arena especially in biomedical field. This book chapter, therefore, summarizes the synthesis of various types of magnetic nanoparticles using different approaches depending of their ability to generate either single core of multcore magnetic nanoparticles. The various biomedical applications of magnetic nanoparticles like Magnetic Resonance Imaging (MRI), drug delivery etc. along with possible limitations and challenges for their extended applications in medicine are also discussed.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (3) ◽  
pp. 208-213 ◽  
Author(s):  
Paul Gatenholm ◽  
Dieter Klemm

AbstractNanocellulose, such as that produced by the bacteria Gluconacetobacter xylinus (bacterial cellulose, BC), is an emerging biomaterial with great potential as a biological implant, wound and burn dressing material, and scaffolds for tissue regeneration. BC has remarkable mechanical properties despite the fact that it contains up to 99% water. The water-holding ability is the most probable reason why BC implants do not elicit any foreign body reaction. Moreover, the nanostructure and morphological similarities with collagen make BC attractive for cell immobilization and cell support. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process. This article describes current and future applications of BC in the biomedical field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1014 ◽  
Author(s):  
Iruthayapandi Selestin Raja ◽  
Chuntae Kim ◽  
Su-Jin Song ◽  
Yong Cheol Shin ◽  
Moon Sung Kang ◽  
...  

Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. Researchers have published many reviews so far describing unusual properties of virus-based nanoparticles, phage display, modification, and possible biomedical applications, including biosensors, bioimaging, tissue regeneration, and drug delivery, however the integration of the virus into different biomaterials for the application of tissue regeneration is not yet discussed in detail. This review will focus on various morphologies of virus-incorporated biomimetic nanocomposites in tissue regeneration and highlight the progress, challenges, and future directions in this area.


Sign in / Sign up

Export Citation Format

Share Document