scholarly journals Binding of aldolase to actin-containing filaments. Quantitative reappraisal of the interactions

1981 ◽  
Vol 195 (1) ◽  
pp. 297-299 ◽  
Author(s):  
C J Masters ◽  
D J Winzor ◽  
L W Nichol

Previously reported results of equilibrium-partition experiments on the interaction of aldolase with actin-containing filaments [Walsh, Winzor, Clarke, Masters & Morton (1980) Biochem. J. 186, 89-98] have been subjected to a more rigorous theoretical analysis involving consideration of the consequences of cross-linking interactions between enzyme and filament. The experimental results obtained with F-actin-tropomyosin are best described by a model with one binding site per heptameric repeat unit of filament and a value of 39000 M-1 for the site binding constant, k. Similar analyses of the influence of Ca2+ on aldolase binding to F-actin--tropomyosin--troponin substantiate the existence of two equivalent binding sites (k = 14900 M-1) for the enzyme on each repeat unit of the thin filament. The Ca2+-sensitivity of this interaction reflects either a decrease in the strength of aldolase binding to these two sites (k = 8200 M-1) or the elimination of one site.

1995 ◽  
Vol 309 (3) ◽  
pp. 951-957 ◽  
Author(s):  
T S Tsuruda ◽  
M H Watson ◽  
D B Foster ◽  
J J J C Lin ◽  
A S Mak

We have reported previously that each smooth-muscle caldesmon binds predominantly to a region within residues 142-227 of tropomyosin, but a weaker binding site also exists at the N-terminal region of tropomyosin [Watson, Kuhn, Novy, Lin and Mak (1990) J. Biol. Chem. 265, 18860-18866]. In view of recent evidence for the presence of tropomyosin-binding sites at both the N- and C-terminal domains of caldesmon, we have studied the binding of the N- and C-terminal fragments of human fibroblast caldesmon expressed in Escherichia coli to tropomyosin and its CNBr fragments. The N-terminal fragment, CaD40 (residues 1-152), binds tropomyosin, but the interaction is mostly abolished in the presence of actin. CaD40 binds strongly to Cn1B(142-281) of tropomyosin, but weakly to Cn1A(11-127). The C-terminal fragment, CaD39, which corresponds to residues 443-736 of gizzard caldesmon, binds tropomyosin, and the interaction is enhanced by actin. CaD39 binds to both Cn1A(11-127) and Cn1B(142-281) of tropomyosin. Our results suggest that the N-terminal domain of caldesmon interacts with the C-terminal half of one tropomyosin molecule, whereas the C-terminal domain binds to both N- and C-terminal regions of the adjacent tropomyosin molecule along the actin filament. In addition, the binding of the N-terminal domain of caldesmon to the actin-tropomyosin filament is weak, which may allow this domain to project off the thin filament to interact with myosin.


1983 ◽  
Vol 213 (1) ◽  
pp. 25-29 ◽  
Author(s):  
P Meisel ◽  
K E Biebler ◽  
A Gens ◽  
K Jaehrig

Photobilirubin II, a stereoisomer of bilirubin, binds to human serum albumin at a single binding site (K = 2.2 × 10(6)M-1), presumably the high-affinity bilirubin-binding site. Binding in the secondary (class II) binding sites is of minor importance. The results are discussed with respect to photometabolism of bilirubin and as a possible source of error in the determination of bilirubin unbound to albumin.


Author(s):  
Michael F. Schmid ◽  
Joanita Jakana ◽  
Paul Matsudaira ◽  
Wah Chiu

Actin associates with crosslinking proteins to form bundles and networks. These assemblies can provide a scaffold to anchor organelles, a support for the cell membrane or can attach the cell to the extracellular matrix or to other cells. Each crosslinker must have at least two actin binding sites, one for each actin filament. Scruin, in the Limulus acrosomal bundle, shows no homology with other actin cross-linking proteins. However, it has two homologous domains also found in the sequence encoded by kelch, a gene in Drosophila that is important in nutrient transport into the oocyte, and in MIPP, a mouse placental protein.We have determined a 13Å helical 3-dimensional structure of the actin-scruin complex, which is the basic repeat unit of the acrosomal bundle in Limulus sperm and have fitted the F-actin filament of Holmes. Each scruin binds to two adjacent actin molecules along a single F-actin filament helix. In the present investigation, we used our high resolution (7Å) spot scan electron images of ice-embedded acrosomal bundles for further analysis of the actin atomic map and scruin-scruin contacts. Spot-scan images were obtained from the frozen, hydrated acrosomal bundles in a 400 kV electron cryomicroscope.


2019 ◽  
Author(s):  
Michael Olp ◽  
Daniel Sprague ◽  
Stefan Kathman ◽  
Ziyang Xu ◽  
Alexandar Statsyuk ◽  
...  

<p>Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the <i>C</i>-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.</p>


1993 ◽  
Vol 58 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Imad Al-Bala'a ◽  
Richard D. Bates

The role of more than one binding site on a nitroxide free radical in magnetic resonance determinations of the properties of the complex formed with a hydrogen donor is examined. The expression that relates observed hyperfine couplings in EPR spectra to complex formation constants and concentrations of each species in solution becomes much more complex when multiple binding sites are present, but reduces to a simpler form when binding at the two sites occurs independently and the binding at the non-nitroxide site does not produce significant differences in the hyperfine coupling constant in the complexed radical. Effects on studies of hydrogen bonding between multiple binding site nitroxides and hydrogen donor solvent molecules by other magnetic resonance methods are potentially more extreme.


2001 ◽  
Vol 66 (8) ◽  
pp. 1208-1218 ◽  
Author(s):  
Guofeng Li ◽  
Mira Josowicz ◽  
Jiří Janata

Structural and electronic transitions in poly(thiophenyleneiminophenylene), usually referred to as poly(phenylenesulfidephenyleneamine) (PPSA) upon electrochemical doping with LiClO4 have been investigated. The unusual electrochemical behavior of PPSA indicates that the dopant anions are bound in two energetically different sites. In the so-called "binding site", the ClO4- anion is Coulombically attracted to the positively charged S or N sites on one chain and simultaneously hydrogen-bonded with the N-H group on a neighboring polymer chain. This strong interaction causes a re-organization of the polymer chains, resulting in the formation of a networked structure linked together by these ClO4- Coulombic/hydrogen bonding "bridges". However, in the "non-binding site", the ClO4- anion is very weakly bound, involves only the electrostatic interaction and can be reversibly exchanged when the doped polymer is reduced. In the repeated cycling, the continuous and alternating influx and expulsion of ClO4- ions serves as a self-organizing process for such networked structures, giving rise to a diminishing number of available "non-binding" sites. The occurrence of these ordered structures has a major impact on the electrochemical activity and the morphology of the doped polymer. Also due to stabilization of the dopant ions, the doped polymer can be kept in a stable and desirable oxidation state, thus both work function and conductivity of the polymer can be electrochemically controlled.


1993 ◽  
Vol 13 (9) ◽  
pp. 5805-5813 ◽  
Author(s):  
M M Wang ◽  
R Y Tsai ◽  
K A Schrader ◽  
R R Reed

Genes which mediate odorant signal transduction are expressed at high levels in neurons of the olfactory epithelium. The molecular mechanism governing the restricted expression of these genes likely involves tissue-specific DNA binding proteins which coordinately activate transcription through sequence-specific interactions with olfactory promoter regions. We have identified binding sites for the olfactory neuron-specific transcription factor, Olf-1, in the sequences surrounding the transcriptional initiation site of five olfactory neuron-specific genes. The Olf-1 binding sites described define the consensus sequence YTCCCYRGGGAR. In addition, we have identified a second binding site, the U site, in the olfactory cyclic nucleotide gated channel and type III cyclase promoters, which binds factors present in all tissue examined. These experiments support a model in which expression of Olf-1 in the sensory neurons coordinately activates a set of olfactory neuron-specific genes. Furthermore, expression of a subset of these genes may be modulated by additional binding factors.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1051
Author(s):  
Edgardo Becerra ◽  
Giovanny Aguilera-Durán ◽  
Laura Berumen ◽  
Antonio Romo-Mancillas ◽  
Guadalupe García-Alcocer

Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.


2000 ◽  
Vol 74 (5) ◽  
pp. 2084-2093 ◽  
Author(s):  
Joel Schaley ◽  
Robert J. O'Connor ◽  
Laura J. Taylor ◽  
Dafna Bar-Sagi ◽  
Patrick Hearing

ABSTRACT The adenovirus type 5 (Ad5) E4-6/7 protein interacts directly with different members of the E2F family and mediates the cooperative and stable binding of E2F to a unique pair of binding sites in the Ad5 E2a promoter region. This induction of E2F DNA binding activity strongly correlates with increased E2a transcription when analyzed using virus infection and transient expression assays. Here we show that while different adenovirus isolates express an E4-6/7 protein that is capable of induction of E2F dimerization and stable DNA binding to the Ad5 E2a promoter region, not all of these viruses carry the inverted E2F binding site targets in their E2a promoter regions. The Ad12 and Ad40 E2a promoter regions bind E2F via a single binding site. However, these promoters bind adenovirus-induced (dimerized) E2F very weakly. The Ad3 E2a promoter region binds E2F very poorly, even via a single binding site. A possible explanation of these results is that the Ad E4-6/7 protein evolved to induce cellular gene expression. Consistent with this notion, we show that infection with different adenovirus isolates induces the binding of E2F to an inverted configuration of binding sites present in the cellular E2F-1 promoter. Transient expression of the E4-6/7 protein alone in uninfected cells is sufficient to induce transactivation of the E2F-1 promoter linked to chloramphenicol acetyltransferase or green fluorescent protein reporter genes. Further, expression of the E4-6/7 protein in the context of adenovirus infection induces E2F-1 protein accumulation. Thus, the induction of E2F binding to the E2F-1 promoter by the E4-6/7 protein observed in vitro correlates with transactivation of E2F-1 promoter activity in vivo. These results suggest that adenovirus has evolved two distinct mechanisms to induce the expression of the E2F-1 gene. The E1A proteins displace repressors of E2F activity (the Rb family members) and thus relieve E2F-1 promoter repression; the E4-6/7 protein complements this function by stably recruiting active E2F to the E2F-1 promoter to transactivate expression.


1988 ◽  
Vol 43 (3-4) ◽  
pp. 213-218 ◽  
Author(s):  
Bernhard Huchzermeyer

A single binding site for phosphate was found on isolated chloroplast coupling factor in the absence of nucleotides. In our experiments the phosphate binding site showed a Kd of 170 μᴍ. We did not observe any differences whether the ATPase activity of CF] had been activated or not. If the enzyme was incubated with [γ-32P]ATP the amount of 32P bound per CF1 depended on the pretreatment of the enzyme: In the presence of ADP no ATP or phosphate was bound to CF,. After activation of ATPase activity one mol of ATP per mol CF, was rapidly bound and hydrolyzed while there was a slowly occurring binding of another phosphate without concomitant nucleotide binding. We conclude that there are two different types of phosphate binding observed in our experiments: 1) Inorganic phosphate can be bound by one catalytic site per mol of CF1 2) The γ-phosphate of ATP is able to bind to an ATP binding domain of the enzyme if this domain can exchange substrates with the incubation medium. This ATP binding domain appears to differ from the site binding inorganic phosphate, because at least a portion of the coupling factor contains more than one labelled phosphate during our ATPase tests.


Sign in / Sign up

Export Citation Format

Share Document