scholarly journals The regulation of phosphate-activated glutaminase activity and glutamine metabolism in the streptozotocin-diabetic rat

1984 ◽  
Vol 224 (1) ◽  
pp. 207-214 ◽  
Author(s):  
M Watford ◽  
E M Smith ◽  
E J Erbelding

The activity of phosphate-activated glutaminase was increased in the kidney, liver and small intestine of rats made diabetic for 6 days with injection of streptozotocin (75 mg/kg body wt.). Insulin prevented this increase in all three tissues. Treatment with NaHCO3, to correct the acidosis that accompanies diabetes, prevented the increase in renal glutaminase activity, but not that in liver or small intestine. Chemically induced acidosis (NH4Cl solution as drinking water) or alkalosis (NaHCO3 solution as drinking water) increased and decreased, respectively, glutaminase activity in the kidney, but were without significant effect on the activity in liver and small intestine. The increase in glutaminase activity in the small intestine during diabetes was due to an overall increase in the size of this organ, and was only detectable when activity was expressed in terms of whole organ, not mucosal scrapings or isolated enterocytes. Prolonged diabetes (40 days) resulted in an even greater increase in the size and glutaminase activity of the small intestine. Despite this marked increase in capacity for glutamine catabolism, arteriovenous-difference measurements showed a complete suppression of plasma glutamine utilization by the small intestine during diabetes, confirming the report by Brosnan, Man, Hall, Colbourne & Brosnan [(1983) Am. J. Physiol. 235, E261-E265].

1987 ◽  
Vol 242 (1) ◽  
pp. 61-68 ◽  
Author(s):  
M Watford ◽  
E J Erbelding ◽  
E M Smith

The small intestine is the major site of glutamine utilization in the mammalian body. During prolonged (40-day) streptozotocin-diabetes in the rat there is a marked increase in both the size and the phosphate-activated glutaminase activity of the small intestine. Despite this increased capacity, intestinal glutamine utilization ceases in diabetic rats. Mean arterial glutamine concentration fell by more than 50% in diabetic rats, suggesting that substrate availability is responsible for the decrease in intestinal glutamine use. When arterial glutamine concentrations in diabetic rats were elevated by infusion of glutamine solutions, glutamine uptake across the portal-drained viscera was observed. The effect of other respiratory fuels on intestinal glutamine metabolism was examined. Infusions of ketone bodies did not affect glutamine use by the portal-drained viscera of non-diabetic rats. Prolonged diabetes had no effect on the activity of 3-oxoacid CoA-transferase in the small intestine or on the rate of ketone-body utilization in isolated enterocytes. Glutamine (2 mM) utilization was decreased in enterocytes isolated from diabetic rats as compared with those from control animals. However, glutaminase activity in homogenates of enterocytes was unchanged by diabetes. In enterocytes isolated from diabetic rats the addition of ketone bodies or octanoate decreased glutamine use. It is proposed that during prolonged diabetes ketone bodies, and possibly fatty acids, replace glutamine as the major respiratory fuel of the small intestine.


1998 ◽  
Vol 79 (4) ◽  
pp. 365-372 ◽  
Author(s):  
L. A. James ◽  
P. G. Lunn ◽  
M. Elia

The activities of the two key enzymes involved in glutamine metabolism, glutaminase (EC 3.5.1.2) and glutamine synthetase (EC 6.3.1.2), have been measured in the various tissues of the gastrointestinal (GI) tract of the rat, from the mouth to the rectum. Glutaminase activity was particularly high in the mucosa of the small intestine, where its activity accounted for more than 80% of the total activity of the GI tract. In contrast, the mouth and oesophagus had very low activities, accounting for less than 2% of the total. Glutamine synthetase was mainly confined to the lower part of the stomach, which accounted for almost 90% of the total activity of the GI tract. Activity in the small intestine was very low, accounting for less than 2% of the total, and similarly low levels were found in the mouth and oesophagus. The data provide the most complete information on the distribution of these enzymes in the GI tract of the rat and suggest: (a) that the mucosa of the small intestine has the highest capacity for glutamine breakdown but the lowest capacity for its synthesis, and so requires an external source of this amino acid; (b) that there is little potential for glutamine synthesis or breakdown in the mouth and oesophagus; and (c) that the lower stomach has a substantial capacity to synthesize glutamine, in contrast to the rest of the GI tract. The results of the investigation are relevant to sites of glutamine metabolism in therapeutic studies involving glutamine administration discussed with reference to reports of the effects of glutamine administration on GI tract injury.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 399
Author(s):  
Magdalena Krauze ◽  
Monika Cendrowska-Pinkosz ◽  
Paulius Matuseviĉius ◽  
Anna Stępniowska ◽  
Paweł Jurczak ◽  
...  

It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1–42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1–7, 15–21, and 29–35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased).


1995 ◽  
Vol 15 (1) ◽  
pp. 133-159 ◽  
Author(s):  
Norman P. Curthoys ◽  
Malcolm Watford

Parasitology ◽  
1978 ◽  
Vol 76 (1) ◽  
pp. 1-9 ◽  
Author(s):  
P. L. Long ◽  
B. J. Millard

SummaryEimeria grenieri was isolated from intensively reared guinea fowl in Britain. The oocysts had average dimensions of 21·09 × 15·48 μm and a small micropyle. Three generations of schizonts were found in the small intestine. The first mature schizonts were found in the upper intestine 30 h after inoculation. Second-generation schizonts were seen 48–80 h and third-generation schizonts were present 80–96 h after inoculation. These schizonts were found in the middle and lower small intestine. It was confirmed that gametogony of this species occurs only in the caeca. The pre-patent time was 112 h and the reproductive index from a dose of 6 × 102 oocysts was 8 × 104. Doses of between 1 × 104 and 1 × 106 caused severe depression of body weight gain. Immunity to re-infection developed rapidly. Sulphaquinoxaline at a dose of 0·04% in the drinking water given after inoculation was effective in reducing the pathogenic effects of the disease. Robenidine given in the food at a concentration of 16·5 ppm (50% of the recommended concentration for chickens) was effective in preventing disease caused by E. grenieri.The endogenous life-cycle of E. grenieri was completed in the chorioallantoic membrane of developing chicken embryos.


2001 ◽  
Vol 281 (3) ◽  
pp. G798-G808 ◽  
Author(s):  
H. Takahara ◽  
M. Fujimura ◽  
S. Taniguchi ◽  
N. Hayashi ◽  
T. Nakamura ◽  
...  

Few previous studies have discussed the changes in serotonin receptor activity in the small intestine of diabetic animals. Therefore, we examined serotonin content in duodenal tissue and dose-dependent effects of serotonin agonists and antagonists on the motor activity of ex vivo vascularly perfused duodenum of streptozotocin (STZ)-diabetic rats. Serotonin content was significantly increased in enterochromaffin cells but not altered in serotonin-containing neurons in STZ-diabetic rats. Motor activity assessed by frequency, amplitude, and percent motility index per 10 min of pressure waves was reduced in the duodenum of diabetic rats, and this reduction was reversed by insulin treatment. Serotonin dose dependently increased the motor activity in control rat duodenum but only a higher concentration of serotonin increased the motor activity in diabetic rats. The 5-hydroxytryptamine (5-HT) receptor subtype 4 (5-HT4) antagonist SB-204070 dose dependently reduced motor activity in both control and diabetic rats, whereas the 5-HT3receptor antagonist azasetron, even at a higher concentration, failed to affect motor activity in diabetic rat duodenum but dose dependently reduced motor activity in control rat duodenum. These results suggest that 5-HT3receptor activity was impaired but 5-HT4receptor activity was intact in STZ-diabetic rat duodenum. Such an impairment of 5-HT3receptor activity may induce the motility disturbance in the small intestine of diabetes mellitus.


1983 ◽  
Vol 245 (4) ◽  
pp. E379-E383 ◽  
Author(s):  
T. B. Miller

Isolated perfused hearts from control Bio-Breeding/Worcester (BB/W) rats and spontaneously diabetic BB/W rats were studied to determine whether metabolic abnormalities that are expressed in alloxan-diabetic rats in the regulation of enzymes involved in glycogen metabolism could be observed in this non-chemically induced insulin-deficient rat. Perfusion of hearts from control rats with 10(-8) M insulin for 10 min resulted in activation of glycogen synthase (30% synthase I without insulin to 44% synthase I with insulin). Perfusion of hearts from BB/W diabetic rats demonstrated a lack of acute synthase activation with insulin and a 45% decrease in synthase phosphatase activity. Perfusion of hearts from BB/W diabetic rats with 0.28 microM epinephrine for 1 min resulted in a greater activation of phosphorylase (44% phosphorylase a) than that observed in BB/W control hearts (31% phosphorylase a) perfused under the same conditions. Epinephrine produced similar changes in cyclic AMP accumulation, protein kinase activation, and phosphorylase kinase activation in perfused hearts of BB/W control and diabetic rats. Further, phosphorylase phosphatase activities were not changed by epinephrine or insulin deficiency. These studies further document metabolic abnormalities in the BB/W diabetic rat that are attributable to insulin deficiency in a non-chemically induced model for insulin-dependent diabetes.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2204
Author(s):  
Katarzyna Ognik ◽  
Paweł Konieczka ◽  
Anna Stępniowska ◽  
Jan Jankowski

The aim of this study was to compare the effect of the use of enrofloxacin and a probiotic containing Enterococcus faecium and Bacillus amyloliquefaciens strains in the first week of life of chickens on oxidative and epigenetic changes in molecules and intestinal integrity. The three treatments were as follows: the control group received no additive in the drinking water (GC); the second group (GP) received a probiotic preparation in the drinking water during the first five days of life, providing E. faecium strain 4a1713 at 1.0 × 107 CFU/L water and B. amyloliquefaciens 4b1822 at 1.0 × 107 CFU/L water, the third group (GA) received an antibiotic (enrofloxacin 0.5 mL/L water) in the drinking water during the first five days of life. The use of both enrofloxacin and a probiotic containing E. faecium and B. amyloliquefaciens strains in chickens’ first week of life improved intestinal integrity and reduced inflammation and oxidative and epigenetic changes in the small intestine. This effect was evident both at 6 days of age and at the end of the rearing period.


1975 ◽  
Vol 53 (6) ◽  
pp. 1135-1140 ◽  
Author(s):  
B. M. Arnold ◽  
M. Kuttner ◽  
D. M. Willis ◽  
A. J. W. Hitchman ◽  
J. E. Harrison ◽  
...  

Using a specific radioimmunoassay for porcine intestinal calcium-binding protein (CaBP), we have measured the concentration of CaBP in the various tissues and organs of normal pigs. Intestinal CaBP was present in highest concentration in the upper small intestine, with lower concentrations in the distal small intestine. Intestinal CaBP was also found, in lower concentrations, in kidney, liver, thyroid, pancreas, and blood. In all other tissues, including parathyroid, bone, skeletal muscle, and brain, CaBP immunoreactivity was undetectable or less than in blood. The elution profile of calcium-binding activity and immunoreactivity from gel filtration analysis of kidney and parathyroid extracts suggest that the calcium-binding protein in the parathyroid gland, and the major calcium-binding protein(s) in the kidney, are chemically and immunochemically different from intestinal CaBP.


Sign in / Sign up

Export Citation Format

Share Document