scholarly journals Functions of ABC transporters in plants

2011 ◽  
Vol 50 ◽  
pp. 145-160 ◽  
Author(s):  
Tobias Kretzschmar ◽  
Bo Burla ◽  
Youngsook Lee ◽  
Enrico Martinoia ◽  
Réka Nagy

ABC (ATP-binding cassette) proteins are ubiquitously found in prokaryotes and eukaryotes and generally serve as membrane-intrinsic primary active pumps. In higher plants, ABC proteins constitute a large family, grouped phylogenetically into eight clusters, subfamilies ABCA–ABCI (ABCH is not found in plants). ABC transporters shuttle substrates as diverse as lipids, phytohormones, carboxylates, heavy metals, chlorophyll catabolites and xenobiotic conjugates across a variety of biological membranes. To date, the largest proportions of characterized members have been localized to the plasma membrane and the tonoplast, with dominant implications in cellular secretion and vacuolar sequestration, but they are also found in mitochondrial, plastidal and peroxisomal membranes. Originally identified as tonoplast-intrinsic proteins that shuttle xenobiotic conjugates from the cytosol into the vacuole, thus being an integral part of the detoxification machinery, ABC transporters are now recognized to participate in a multitude of physiological processes that allow the plant to adapt to changing environments and cope with biotic and abiotic stresses.

Author(s):  
O. Bat-Erdene ◽  
A. Szegő ◽  
M. Gyöngyik ◽  
I. Mirmazloum ◽  
I. Papp

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 95-100 ◽  
Author(s):  
A.N. Misra ◽  
M. Misra ◽  
R. Singh

Nitric oxide (NO) is a gaseous diatomic molecule with a wide variety of physiological and pathological implications in plants. Presence of unpaired electron in its molecular orbital makes it highly reactive; it can react directly with metal complexes, radicals, DNA, proteins, lipids and other biomolecules. Nitric oxide (NO) and reactive oxygen species (ROS) are known to play essential role in a number of important plant physiological processes. This manuscript reviews the role of NO on these processes during various biotic and abiotic stresses.  


Author(s):  
Priyanka Singh ◽  
Yamshi Arif ◽  
Andrzej Bajguz ◽  
Shamsul Hayat

Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is a special subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin’s role in increasing several physiological and biochemical processes in under stress and non-stress environments. Additionally, this review briefly assesses quercetin’s role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin’s role in plant signaling are also discussed.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2020 ◽  
Vol 22 (1) ◽  
pp. 155
Author(s):  
Mikhail V. Diachkov ◽  
Karoll Ferrer ◽  
Jana Oklestkova ◽  
Lucie Rarova ◽  
Vaclav Bazgier ◽  
...  

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


Sign in / Sign up

Export Citation Format

Share Document