scholarly journals Long non-coding RNA ARAP1-AS1 accelerates cell proliferation and migration in breast cancer through miR-2110/HDAC2/PLIN1 axis

2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Chong Lu ◽  
Xiuhua Wang ◽  
Xiangwang Zhao ◽  
Yue Xin ◽  
Chunping Liu

Abstract Breast cancer (BC) poses a great threaten to women health. Numerous evidences suggest the important role of long non-coding RNAs (lncRNAs) in BC development. In the present study, we intended to investigate the role of ARAP1-AS1 in BC progression. First of all, the GEPIA data suggested that ARAP1-AS1 was highly expressed in breast invasive carcinoma (BRAC) tissues compared with the normal breast tissues. Meanwhile, the expression of ARAP1-AS1 was greatly up-regulated in BC cell lines. ARAP1-AS1 knockdown led to repressed proliferation, strengthened apoptosis and blocked migration of BC cells. Moreover, ARAP1-AS1 could boost HDAC2 expression in BC through sponging miR-2110 via a ceRNA mechanism. Of note, the UCSC predicted that HDAC2 was a potential transcriptional regulator of PLIN1, an identified tumor suppressor in BC progression. Moreover, we explained that the repression of HDAC2 on PLIN1 was owing to its deacetylation on PLIN1 promoter. More importantly, depletion of PLIN1 attenuated the mitigation function of ARAP1-AS1 silence on the malignant phenotypes of BC cells. To sum up, ARAP1-AS1 serves a tumor-promoter in BC development through modulating miR-2110/HDAC2/PLIN1 axis, which may help to develop novel effective targets for BC treatment.

Author(s):  
Tianming Chen ◽  
Bin Huang ◽  
Yaozhen Pan

Long non-coding RNAs (lncRNAs) have been shown to participate in the development and progression of several different types of cancer. Past studies indicated that lncRNA MAFG-antisense 1 (AS1) promotes colorectal cancer. However, the role of MAFG-AS1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study is to examine the effect of lncRNA MAFG-AS1 on drug resistance HCC. The results indicated that MAFG-AS1 is upregulated in drug-resistant cells. Further, MAFG-AS1 promotes growth and migration of HCC by upregulating STRN4 through absorbing miR-3196. Thus, LncRNA MAFA-AS1 may become a novel target to treat HCC patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bei-Yan Liu ◽  
Lin Li ◽  
Li-Wei Bai ◽  
Chang-Shui Xu

Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.


2021 ◽  
Vol 22 (17) ◽  
pp. 9165
Author(s):  
David Roig-Carles ◽  
Holly Jackson ◽  
Katie F. Loveson ◽  
Alan Mackay ◽  
Rebecca L. Mather ◽  
...  

Diffuse intrinsic pontine glioma (DIPG) is an incurable paediatric malignancy. Identifying the molecular drivers of DIPG progression is of the utmost importance. Long non-coding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, whose functions have not yet been elucidated in DIPG. Herein, we studied the oncogenic role of the development-associated H19 lncRNA in DIPG. Bioinformatic analyses of clinical datasets were used to measure the expression of H19 lncRNA in paediatric high-grade gliomas (pedHGGs). The expression and sub-cellular location of H19 lncRNA were validated in DIPG cell lines. Locked nucleic acid antisense oligonucleotides were designed to test the function of H19 in DIPG cells. We found that H19 expression was higher in DIPG vs. normal brain tissue and other pedHGGs. H19 knockdown resulted in decreased cell proliferation and survival in DIPG cells. Mechanistically, H19 buffers let-7 microRNAs, resulting in the up-regulation of oncogenic let-7 target (e.g., SULF2 and OSMR). H19 is the first functionally characterized lncRNA in DIPG and a promising therapeutic candidate for treating this incurable cancer.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 459 ◽  
Author(s):  
Priyanka Borah ◽  
Antara Das ◽  
Matthew Milner ◽  
Arif Ali ◽  
Alison Bentley ◽  
...  

Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking cues from studies in animals systems. The availability of next-generation sequencing has enabled genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors of microRNA expression and have a function known as target mimicry with the sequestered transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show diverse mechanisms of gene regulation, most of which remain poorly understood. In this review, we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance current understanding of the role of lncRNAs in nutrient homeostasis in plants.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Kai Liu ◽  
Jiacheng Wu ◽  
...  

Background: Long non-coding RNA (lncRNA) breast cancer anti-estrogen resistance 4 (BCAR4) is a characterized oncogenic lncRNA in different cancers. This review is dedicated to summarize various molecular mechanisms of BCAR4 and demonstrate that the biological functions exerted by BCAR4 are good entry points for therapy. Methods: The molecular mechanism of BCAR4 acting on tumors is summarized by reviewing PubMed. Results: The expression of lncRNA BCAR4 is abnormally increased in all kinds of tumors, including colorectal cancer, prostate cancer, bladder cancer, gastric cancer, chondrosarcoma, glioma, breast cancer, glioma, gastric cancer, liver cancer, cervical cancer, lung cancer, etc. Besides, BCAR4 mediates multiple processes involved in carcinogenesis, including proliferation, invasion, anti-apoptosis, migration. Conclusion: BCAR4 may show great clinical value in this direction as a therapeutic cancer target.


2019 ◽  
Author(s):  
Rui Ding ◽  
ZhengTao Gu ◽  
ChangSheng Yang ◽  
CaiQiang Huang ◽  
QingChu Li ◽  
...  

Abstract BackgroundLong non-coding RNAs (LncRNAs) have been found to regulate innumerable diseases, yet the role of lncRNA MEG3 in osteoporosis (OP) has rarely been discussed. Here, we intend to probe into the mechanism of MEG3 on OP development by modulating microRNA-214 (miR-214) and thioredoxin-interacting protein (TXNIP)MethodsRat models of OP were established. MEG3, miR-214, and TXNIP mRNA expression in rat femoral tissues was detected, along with TXNIP, PCNA, cyclin D1, OCN, RUNX2, Osteolix, OPG, and PANKL protein expression. Ca, P and ALP contents in rat blood samples were also determined. Primary osteoblasts were isolated and cultured. Viability, COL-I, COL-II and COL-Χ contents, ALP content and activity, and mineralized nodule area of rat osteoblasts in each group were further detected.ResultsMEG3 and TXNIP were overexpressed while miR-214 was underexpressed in femoral tissues of OP rats. MEG3 silencing and miR-214 overexpression increased BMD, BV/TV, Tb.N, Tb.Th, the number of osteoblasts, collagen area and OPG expression, and downregulated PANKL of femoral tissues in OP rats. MEG3 silencing and miR-214 overexpression elevated Ca and P contents and reduced ALP content in OP rats’ blood, elevated viability, differentiation ability, COL-I and COL-Χ contents and ALP activity, and abated COL-II content of osteoblasts. MEG3 specifically bound to miR-214 to regulate TXNIP.ConclusionCollectively, we demonstrated that MEG3 silencing and miR-214 overexpression promote proliferation and differentiation of osteoblasts in OP by downregulating TXNIP, which further improves OP.


2019 ◽  
Vol 20 (3) ◽  
pp. 735 ◽  
Author(s):  
Gabriela Cruz-Miranda ◽  
Alfredo Hidalgo-Miranda ◽  
Diego Bárcenas-López ◽  
Juan Núñez-Enríquez ◽  
Julian Ramírez-Bello ◽  
...  

Acute leukemia (AL) is the main type of cancer in children worldwide. Mortality by this disease is high in developing countries and its etiology remains unanswered. Evidences showing the role of the long non-coding RNAs (lncRNAs) in the pathophysiology of hematological malignancies have increased drastically in the last decade. In addition to the contribution of these lncRNAs in leukemogenesis, recent studies have suggested that lncRNAs could be used as biomarkers in the diagnosis, prognosis, and therapeutic response in leukemia patients. The focus of this review is to describe the functional classification, biogenesis, and the role of lncRNAs in leukemogenesis, to summarize the evidence about the lncRNAs which are playing a role in AL, and how these genes could be useful as potential therapeutic targets.


2020 ◽  
Vol 21 (8) ◽  
pp. 2659
Author(s):  
Hong Zhang ◽  
Huan Guo ◽  
Weiguo Hu ◽  
Wanquan Ji

Growing interest and recent evidence have identified long non-coding RNA (lncRNA) as the potential regulatory elements for eukaryotes. LncRNAs can activate various transcriptional and post-transcriptional events that impact cellular functions though multiple regulatory functions. Recently, a large number of lncRNAs have also been identified in higher plants, and an understanding of their functional role in plant resistance to infection is just emerging. Here, we focus on their identification in crop plant, and discuss their potential regulatory functions and lncRNA-miRNA-mRNA network in plant pathogen stress responses, referring to possible examples in a model plant. The knowledge gained from a deeper understanding of this colossal special group of plant lncRNAs will help in the biotechnological improvement of crops.


2017 ◽  
Vol 44 (3) ◽  
pp. 1188-1198 ◽  
Author(s):  
Jidong Sui ◽  
Xuejun Yang ◽  
Wenjing Qi ◽  
Kun Guo ◽  
Zhenming Gao ◽  
...  

Background/Aims: Recent evidence has indicated the crucial regulatory roles of long non-coding RNAs (lncRNAs) in tumour biology. In hepatocellular carcinoma (HCC), aberrant expression of lncRNAs plays an essential role in HCC tumourigenesis. However, the potential roles and regulatory mechanisms of the novel human lncRNA, Linc-USP16, in HCC are unclear. Methods: To investigate the function of Linc-USP16 in HCC, we first analysed the expression levels of Linc-USP16 in HCC patient tissues and cell lines via q-RT-PCR and established overexpressed or knockdown HCC cell lines. Results: Here, we found that Linc-USP16 expression was significantly down-regulated in HCC patient tissues and cell lines. Further functional experiments suggested that Linc-USP16 could directly increase PTEN expression by acting as a competing endogenous RNA (ceRNA) for miR-21 and miR-590-5p. These interactions led to repression of AKT pathway and inhibition of HCC cell proliferation and migration. Conclusion: Thus, our data showed that Linc-USP16, as a tumour suppressor, plays an important role in HCC pathogenesis and provides a new therapeutic strategy for HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document