scholarly journals Conditioned Medium of IGF1-Induced Synovial Membrane Mesenchymal Stem Cells Increases Chondrogenic and Chondroprotective Markers in Chondrocyte Inflammation

2021 ◽  
Author(s):  
Marlina Marlina ◽  
Armenia Armenia ◽  
Rizki Rahmadian ◽  
Jenifer Kiem Aviani ◽  
Ika Adhani Sholihah ◽  
...  

Recently, Mesenchymal stem cells (MSCs) are the most explored cells for cell therapy for osteoarthritis (OA) that can be obtained from various sources. Synovial Membrane Mesenchymal Stem Cells (SMMSCs) provide best potential for OA therapy, however they are not widely explored. Conditioned Medium of SMMSCs (SMMSCs-CM) rich in growth factors and cytokines can inhibit apoptosis and increase chondrocytes cell proliferation. The aim of this study was to determine growth factors content in SMMSCs-CM as well as the chondrogenic and chondroprotective markers expression in OA model after IGF1-induced and non-induced SMMSCs-CM treatments. Chondrocyte cells line (CHON002) was induced by IL1β as OA model (IL1β-CHON002) and treated with SMMSCs-CM with or without IGF1 induction to determine its effectiveness in repairing OA cells model. ELISA was used to assay BMP2, FGF18, and TGFβ1 levels in SMMSCs-CM, MMP13, and ADAMTS4 levels in OA cells model treated with SMMSCs-CM. RT-qPCR analyses were used to investigate the gene expression of SOX9, COL2, and COL10. CM from SMMSCs cultured and induced by IGF1 150 ng/mL was the most effective concentration for increasing the content of growth factor markers of SMMSCs-CM, which had successfully increased negative cartilage hypertrophy markers (SOX9 and COL2) and reduced hypertrophy markers (COL10, MMP13, and ADAMTS4). Preconditioning with IGF1 has better and very significant results in lowering MMP13 and ADAMTS4 levels. This study supports IGF1 pre-conditioned SMMSCs-CM to develop a new therapeutic approach in OA improvement through its chondrogenic and chondroprotective roles.

Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuanhe Song ◽  
Yaoping Xie ◽  
Yang Liu ◽  
Ming Shao ◽  
Wenbo Wang

Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconstruction. A pellet coculture system of human SSC and me-CH was used in this study. Enhanced glycosaminoglycans (GAG) in coculture pellets were demonstrated by Alcian blue staining and GAG quantification, when compared to monoculture. More collagen synthesis was shown in coculture pellets by hydroxyproline assay. Increased proliferation of me-CH was observed in coculture. Data from BrdU staining and ELISA demonstrated that conditioned medium of SSCs enhanced the proliferation and collagen synthesis of me-CH, and this effect was blocked by neutralizing antibody against fibroblast growth factor 1 (FGF1). Western blot showed that conditioned medium of SSCs can activate mitogen-activated protein kinase (MAPK) signaling pathways by increasing the phosphorylation of mitogen-activated regulated protein kinase 1/2 (MEK) and extracellular-signal-regulated kinases 1/2 (ERK). Overall, this study provided evidence that synovial MSCs can support proliferation and collagen synthesis of fibrochondrocytes, by secreting FGF1. Coimplantation of SSC and me-CH could be a useful strategy for reconstructing meniscus.


2020 ◽  
Vol 15 (2) ◽  
pp. 1261-1275 ◽  
Author(s):  
Mudasir Bashir Gugjoo ◽  
Amarpal ◽  
Ahmed Abdelbaset-Ismail ◽  
Hari Prasad Aithal ◽  
Prakash Kinjavdekar ◽  
...  

Aim: An attempt was made to improve osteochondral healing with allogeneic mesenchymal stem cells (MSCs) along with certain growth factors. Materials & methods: Induced knee osteochondral defects were filled as: phosphate buffer saline (group A); MSCs in collagen gel (group B); group B plus insulin like growth factor-1 (group C); group C plus transforming growth factor β-1 (group D). Results: Gross and scanning electron microscopy showed superior morphology and surface architecture of the healed tissue in groups D and C. Histologically, group D revealed hyaline cartilage characteristic features followed in order by group C and group B. In all treatment groups, chondrogenic matrix, collagen II2B ( col II 2B) and aggrecan were secreted. Conclusion: Combined use of MSCs and growth factors could accelerate osteochondral healing.


2019 ◽  
Vol 208 (1-2) ◽  
pp. 48-58
Author(s):  
Marzieh Hosseini ◽  
Saghar Salehpour ◽  
Marefat Ghaffari Novin ◽  
Zahra Shams Mofarahe ◽  
Mohammad-Amin Abdollahifar ◽  
...  

Follicular loss and tissue degeneration are great challenges in ovarian tissue culture systems. Mesenchymal stem cells (MSC) secrete a cocktail of growth factors and cytokines which supports adjacent cells and tissues. The aim of the current study was to investigate the impact of human bone marrow (hBM)-MSC, as co-culture cells, on human follicular development in ovarian cortical tissue (OCT) culture. For this purpose, warmed OCT fragments were co-cultured with hBM-MSC for 8 days and compared to monocultured OCT. During the culture period, ovarian follicle survival and development in the OCT were evaluated using histological observation, follicular developmental-related genes expression, and estradiol production. Furthermore, cell proliferation and apoptosis were assessed. The results showed that there were no significant differences in conserved ovarian follicles with a normal morphology between the two groups. However, the percentage of developing follicles, as well as follicular developmental gene expression, significantly increased in the co-culture group compared to the monoculture group. On the other hand, compared with the monoculture group, the co-culture group demonstrated a significant increase in cell proliferation, indicated by Ki67 gene expression, as well as a dramatic decrease in apoptotic cell percentage, revealed by TUNEL assay. These findings indicated that co-culturing of hBM-MSC with OCT could improve follicular activation and early follicular development in human ovarian tissue culture systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Chunyang Peng ◽  
Yajiao Li ◽  
Li Lu ◽  
Jianwen Zhu ◽  
Huiyu Li ◽  
...  

Cell therapy has emerged as a promising strategy for treating neurological diseases such as stroke, spinal cord injury, and various neurodegenerative diseases, but both embryonic neural stem cells and human induced Pluripotent Stem Cell- (iPSC-) derived neural stem cells have major limitations which restrict their broad use in these diseases. We want to find a one-step induction method to transdifferentiate the more easily accessible Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSCs) into neural stem/progenitor cells suitable for cell therapy purposes. In this study, UC-MSCs were induced to form neurospheres under a serum-free suspension culture with Epidermal Growth Factor- (EGF-) and basic Fibroblast Growth Factor- (bFGF-) containing medium within 12 hours. These MSC-derived neurospheres can self-renew to form secondary neurospheres and can be readily induced to become neurons and glial cells. Real-time PCR showed significantly upregulated expression of multiple stemness and neurogenic genes after induction. RNA transcriptional profiling study showed that UC-MSC-derived neurospheres had a unique transcriptional profile of their own, with features of both UC-MSCs and neural stem cells. RayBio human growth factor cytokine array analysis showed significantly upregulated expression levels of multiple neurogenic and angiogenic growth factors, skewing toward a neural stem cell phenotype. Thus, we believe that these UC-MSC-derived neurospheres have amenable features of both MSCs and neural stem/progenitor cells and have great potential in future stem cell transplantation clinical trials targeting neurological disorders.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Huaijuan Ren ◽  
Yunxia Sang ◽  
Fengli Zhang ◽  
Zhaoqing Liu ◽  
Nianmin Qi ◽  
...  

Although mesenchymal stem cells (MSCs) based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC), dental pulp (DP), and menstrual blood (MB) are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.


2017 ◽  
Vol 30 (4) ◽  
pp. 383-394 ◽  
Author(s):  
Thangavelu Soundara Rajan ◽  
Francesca Diomede ◽  
Placido Bramanti ◽  
Oriana Trubiani ◽  
Emanuela Mazzon

Neuronal cell death is a normal process during central nervous system (CNS) development and is also involved in the death of motor neurons in diverse spinal motor neuron degenerative diseases. Here, we investigated the neuroprotective effect of secretory factors released from human gingival mesenchymal stem cells (hGMSCs) in mechanically injured murine motor-neuron-like NSC-34 cells. The cells were exposed to scratch injury and the markers for apoptosis and oxidative stress were examined. Immunocytochemistry results showed that proapoptotic markers cleaved caspase-3 and Bax were elevated while anti-apoptotic protein Bcl-2 was suppressed in scratch-injured NSC-34 cells. Oxidative stress markers SOD-1, inducible nitric oxide synthase (iNOS), Cox-2, and proinflammatory cytokine tumor necrosis factor alpha (TNF-α) were activated. Conditioned medium (CM) derived from hGMSCs (hGMSC-CM) significantly blocked the cell death by suppressing SOD-1, iNOS, TNF-α, cleaved caspase-3, and Bax. Bcl-2 and anti-inflammatory cytokine anti-interleukin 10 (IL-10) were increased in hGMSC-CM-treated injured cells. Moreover, hGMSC-CM treatment upregulated neurotrophins anti-brain-derived neurotrophic factor (BDNF) and NT3. Western blot data of hGMSC-CM revealed the presence of neurotrophins nerve growth factor (NGF), NT3, anti-inflammatory cytokines IL-10, and transforming growth factor beta (TGF-β), suggesting their positive role to elicit neuroprotection. Our results propose that hGMSC-CM may serve as a simple and potential autologous therapeutic tool to treat motor neuron injury.


2008 ◽  
Vol 17 (10-11) ◽  
pp. 1145-1155 ◽  
Author(s):  
Miki Yokokawa ◽  
Shunsuke Ohnishi ◽  
Hatsue Ishibashi-Ueda ◽  
Hiroaki Obata ◽  
Kentaro Otani ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into a variety of lineages including myocytes and vascular endothelial cells. However, little information is available regarding the therapeutic potential of MSCs in patients with atrioventricular block (AVB). We investigated whether local implantation of MSCs improves AV conduction in a rat model of complete AVB. Complete AVB was achieved by injection of ethanol into the AV nodal region of Lewis rats. Five days after ethanol injection, 2 × 106 of MSCs (MSC group) or vehicle (Control group) were injected into the AV nodal region. Animals were monitored by electrocardiograms for 14 days, and physiological and histological examinations were performed. The 1:1 AV conduction was recovered in 5 of 15 rats (33%) in the MSC group during the follow-up period, whereas no improvement was observed in the control group. MSC transplantation significantly decreased collagen deposition in the AV node, which was associated with a marked decrease in transforming growth factor-β1 expression. In vitro experiments demonstrated that MSCs secreted a large amount of antifibrotic factors such as hepatocyte growth factor and interleukin-10, and MSC conditioned medium inhibited the growth of adult cardiac fibroblasts. In addition, local injection of MSC conditioned medium recovered AV conduction in 2 of 15 rats (13%). MSC transplantation improved AV conduction in a rat model of complete AVB, at least in part through antifibrotic paracrine effects.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
E. Oliveira ◽  
R. C. Assunção-Silva ◽  
O. Ziv-Polat ◽  
E. D. Gomes ◽  
F. G. Teixeira ◽  
...  

Mesenchymal stem cells (MSCs) have been proposed for spinal cord injury (SCI) applications due to their capacity to secrete growth factors and vesicles—secretome—that impacts important phenomena in SCI regeneration. To improve MSC survival into SCI sites, hydrogels have been used as transplantation vehicles. Herein, we hypothesized if different hydrogels could interact differently with adipose tissue-derived MSCs (ASCs). The efficacy of three natural hydrogels, gellan gum (functionalized with a fibronectin peptide), collagen, and a hydrogel rich in laminin epitopes (NVR-gel) in promoting neuritogenesis (alone and cocultured with ASCs), was evaluated in the present study. Their impact on ASC survival, metabolic activity, and gene expression was also evaluated. Our results indicated that all hydrogels supported ASC survival and viability, being this more evident for the functionalized GG hydrogels. Moreover, the presence of different ECM-derived biological cues within the hydrogels appears to differently affect the mRNA levels of growth factors involved in neuronal survival, differentiation, and axonal outgrowth. All the hydrogel-based systems supported axonal growth mediated by ASCs, but this effect was more robust in functionalized GG. The data herein presented highlights the importance of biological cues within hydrogel-based biomaterials as possible modulators of ASC secretome and its effects for SCI applications.


Sign in / Sign up

Export Citation Format

Share Document