Control of protein translation by phosphorylation of the mRNA 5′-cap-binding complex

2007 ◽  
Vol 35 (6) ◽  
pp. 1634-1637 ◽  
Author(s):  
O.A. Pierrat ◽  
V. Mikitova ◽  
M.S. Bush ◽  
K.S. Browning ◽  
J.H. Doonan

Initiation of mRNA translation is a key regulatory step in the control of gene expression. Microarray analysis indicates that total mRNA levels do not always reflect protein levels, since mRNA association with polyribosomes is necessary for protein synthesis. Phosphorylation of translation initiation factors offers a cost-effective and rapid way to adapt to physiological and environmental changes, and there is increasing evidence that many of these factors are subject to multiple regulatory phosphorylation events. The present article focuses on the nature of reversible phosphorylation and the function of the 5′-cap-binding complex in plants.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ping Song ◽  
Fan Yang ◽  
Hongchuan Jin ◽  
Xian Wang

AbstractIn addition to the deregulation of gene transcriptions and post-translational protein modifications, the aberrant translation from mRNAs to proteins plays an important role in the pathogenesis of various cancers. Targeting mRNA translation are expected to become potential approaches for anticancer treatments. Protein translation is affected by many factors including translation initiation factors and RNA-binding proteins. Recently, modifications of mRNAs mainly N6-methyladenine (m6A) modification and noncoding RNAs, such as microRNAs and long noncoding RNAs are involved. In this review, we generally summarized the recent advances on the regulation of protein translation by the interplay between mRNA modifications and ncRNAs. By doing so, we hope this review could offer some hints for the development of novel approaches in precision therapy of human cancers.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1425
Author(s):  
Alena Shmakova ◽  
Mark Frost ◽  
Michael Batie ◽  
Niall S. Kenneth ◽  
Sonia Rocha

PBRM1, a component of the chromatin remodeller SWI/SNF, is often deleted or mutated in human cancers, most prominently in renal cancers. Core components of the SWI/SNF complex have been shown to be important for the cellular response to hypoxia. Here, we investigated how PBRM1 controls HIF-1α activity. We found that PBRM1 is required for HIF-1α transcriptional activity and protein levels. Mechanistically, PBRM1 is important for HIF-1α mRNA translation, as absence of PBRM1 results in reduced actively translating HIF-1α mRNA. Interestingly, we found that PBRM1, but not BRG1, interacts with the m6A reader protein YTHDF2. HIF-1α mRNA is m6A-modified, bound by PBRM1 and YTHDF2. PBRM1 is necessary for YTHDF2 binding to HIF-1α mRNA and reduction of YTHDF2 results in reduced HIF-1α protein expression in cells. Our results identify a SWI/SNF-independent function for PBRM1, interacting with HIF-1α mRNA and the epitranscriptome machinery. Furthermore, our results suggest that the epitranscriptome-associated proteins play a role in the control of hypoxia signalling pathways.


Development ◽  
2020 ◽  
pp. dev.194480
Author(s):  
Ryo Fujita ◽  
Solène Jamet ◽  
Graham Lean ◽  
Harry Chun Man Cheng ◽  
Steven Hébert ◽  
...  

Translational control of gene expression is an important regulator of adult stem cell quiescence, activation and self-renewal. In skeletal muscle, quiescent satellite cells maintain low levels of protein synthesis, mediated in part through the phosphorylation of eIF2α (P-eIF2α). Pharmacological inhibition of the eIF2α phosphatase with the small molecule sal003 maintains P-eIF2α and permits the expansion of satellite cells ex vivo. Paradoxically, P-eIF2α also increases the translation of specific mRNAs, which is mediated by P-eIF2α dependent readthrough of inhibitory upstream open reading frames (uORFs). Here, we ask whether P-eIF2α dependent mRNA translation enables expansion of satellite cells. Using transcriptomic and proteomic analyses, we show a number of genes associated with the assembly of the spindle pole to be upregulated at the level of protein, without corresponding change in mRNA levels, in satellite cells expanded in the presence of sal003. We show that uORFs in the 5'UTR of mRNA for the mitotic spindle stability gene Tacc3 direct P-eIF2α dependent translation. Satellite cells deficient for TACC3 exhibit defects in expansion, self-renewal and regeneration of skeletal muscle.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2440
Author(s):  
Ioanna-Maria Gkotinakou ◽  
Eleni Kechagia ◽  
Kalliopi Pazaitou-Panayiotou ◽  
Ilias Mylonis ◽  
Panagiotis Liakos ◽  
...  

Hypoxia-inducible transcription factors 1 and 2 (HIFs) are major mediators of cancer development and progression and validated targets for cancer therapy. Although calcitriol, the biologically active metabolite of vitamin D, was attributed with anticancer properties, there is little information on the effect of calcitriol on HIFs and the mechanism underling this activity. Here, we demonstrate the negative effect of calcitriol on HIF-1/2α protein levels and HIF-1/2 transcriptional activity and elucidate the molecular mechanism of calcitriol action. We also reveal that the suppression of vitamin D receptor (VDR) expression by siRNA does not abrogate the negative regulation of HIF-1α and HIF-2α protein levels and HIF-1/2 transcriptional activity by calcitriol, thus testifying that the mechanism of these actions is VDR independent. At the same time, calcitriol significantly reduces the phosphorylation of Akt protein kinase and its downstream targets and suppresses HIF-1/2α protein synthesis by inhibiting HIF1A and EPAS1 (Endothelial PAS domain-containing protein 1) mRNA translation, without affecting their mRNA levels. On the basis of the acquired data, it can be proposed that calcitriol reduces HIF-1α and HIF-2α protein levels and inhibits HIF-1 and HIF-2 transcriptional activity by a VDR-independent, nongenomic mechanism that involves inhibition of PI3K/Akt signaling pathway and suppression of HIF1A and EPAS1 mRNA translation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1238-1238 ◽  
Author(s):  
Charlene F. Barroga ◽  
Hang Pham ◽  
Kenneth Kaushansky

Abstract Mice harboring c-Myb hypomorphic mutations display enhanced thrombopoiesis because of increased numbers of megakaryocytic progenitors (CFU-MK) and mature megakaryocytes (MK). Thrombopoietin (Tpo), the primary regulator of megakaryopoiesis, induces these same effects, which lead us to hypothesize that Tpo might act, at least in part, through modulation of c-Myb expression. We found using quantitative (Q)-PCR that c-Myb mRNA levels were 13-fold reduced during Tpo-induced MK maturation. Micro RNAs (miRs) are ∼22 nucleotide species that down-regulate gene expression by binding to the 3′ untranslated region (UTR) of specific mRNAs, enhancing mRNA degradation, or by reducing mRNA translation efficiency. We noted that the 3′UTR of c-Myb contains a number of miR target sites, including four that bind miR150; using a specific Q-PCR assay we also found that Tpo increased mir-150 expression to 160% of baseline at 24 hr and 250% at 48 hr in UT7/TPO cells (n=2 experiments). To test if miR150 affects c-Myb expression, we introduced the 3′UTR of c-Myb into a luciferase reporter gene (pCMV-luc-3′UTRcMyb), in which CMV promoter-driven luciferase activity would reflect the stability of the 3′UTR of c-Myb, and allow us to test the effects of miR150 on c-Myb expression in transduced cells; Q-PCR and western blotting were used to simultaneously assess endogenous c-Myb mRNA and protein levels in the cells treated with miR-150 and anti-miR-150, and their respective controls (Ambion, ABI). Co-transfection of UT7/TPO cells with pCMV-luc-3′UTRcMyb and miR-150 significantly down-regulated luciferase activity to 40% of baseline 24 hr following transfection (p = 0.035; n=2 experiments) compared to a miR negative control. Luciferase activity in cells transfected with a control luc plasmid lacking the 3′UTR of c-Myb was not modulated by introduction of miR-150. Q-PCR analysis revealed that endogenous c-Myb mRNA was significantly down-regulated to 60% of baseline upon transfection of miR-150 compared to the negative control (p = 0.043), while the essential megakaryocytic transcription factor, AML1/RUNX1, remained unaltered. Western blotting of these cell lysates revealed that c-Myb protein expression was down-regulated to 30% of baseline (n=3 experiments) following transduction with miR150 but not with the miR negative control. Converse experiments utilizing anti-miRs, which inhibit expression of endogenous miRs, revealed that anti-miR150 significantly upregulated luciferase activity to 180% of baseline compared to an anti-miR-negative control (p=0.003; n=2 experiments). These findings establish that miR-150 down-modulates c-Myb mRNA, and to a greater extent protein levels, suggesting effects on both mRNA stability and protein translation efficiency. And since Tpo affects miR-150 expression, our results also suggest that in addition to direct effects on the survival and growth of MK progenitor cells, mediated by the JAK/STAT, PI3K/Akt and MAPK pathways, Tpo down-modulates c-Myb expression during megakaryopoiesis through the induction of miR150. We are currently ascertaining the in vivo role of miR-150 in Tpo-induced megakaryopoiesis, but these studies already establish that hematopoietic growth factors such as Tpo can influence transcription factor expression through modulation of microRNA species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258903
Author(s):  
Franziska Falk ◽  
Kevin Kamanyi Marucha ◽  
Christine Clayton

Most transcription in Trypanosoma brucei is constitutive and polycistronic. Consequently, the parasite relies on post-transcriptional mechanisms, especially affecting translation initiation and mRNA decay, to control gene expression both at steady-state and for adaptation to different environments. The parasite has six isoforms of the cap-binding protein EIF4E as well as five EIF4Gs. EIF4E1 does not bind to any EIF4G, instead being associated with a 4E-binding protein, 4EIP. 4EIP represses translation and reduces the stability of a reporter mRNA when artificially tethered to the 3’-UTR, whether or not EIF4E1 is present. 4EIP is essential during the transition from the mammalian bloodstream form to the procyclic form that lives in the Tsetse vector. In contrast, EIF4E1 is dispensable during differentiation, but is required for establishment of growing procyclic forms. In Leishmania, there is some evidence that EIF4E1 might be active in translation initiation, via direct recruitment of EIF3. However in T. brucei, EIF4E1 showed no detectable association with other translation initiation factors, even in the complete absence of 4EIP. There was some evidence for interactions with NOT complex components, but if these occur they must be weak and transient. We found that EIF4E1is less abundant in the absence of 4EIP, and RNA pull-down results suggested this might occur through co-translational complex assembly. We also report that 4EIP directly recruits the cytosolic terminal uridylyl transferase TUT3 to EIF4E1/4EIP complexes. There was, however, no evidence that TUT3 is essential for 4EIP function.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2787-2787
Author(s):  
Stefan Nagel ◽  
Letizia Venturini ◽  
Corinna Meyer ◽  
Hans G. Drexler ◽  
Roderick A.F. MacLeod ◽  
...  

Abstract Homeobox genes of the NK-like familiy, including TLX1, TLX3 and NKX2-5, are ectopically activated in T-cell acute lymphoblastic leukemia (T-ALL) cells mostly via chromosomal aberrations. The pathologic function of these closely related genes is still unclear. Here we analyzed their effect on the C13ORF25 gene, containing the miR-17-92 cluster. Micro RNAs (miRNAs) are a class of small non-coding RNAs which are part of an evolutionarily highly conserved intracellular mechanism, regulating gene expression by hybridization to complementary sequences usually located in the 3′untranslated region of coding transcripts. The primary transcripts (pri-mRNA) are processed to short mature miRNAs, mediating either inhibition of mRNA translation or mRNA cleavage. Aberrant expression of specific miRNAs is involved in oncogenesis as recently described for several human malignancies. The miR-17-92 polycistron encodes miRNAs which decrease E2F1 protein expression. Transcription of both E2F1 and miR-17-92 is induced by MYC, itself a target of E2F1, generating a highly regulated interactive network. Depending on the cellular context, E2F1 performs conflicting tasks by triggering proliferation or inducing apoptosis. We investigated the expression of the miR-17-92 cluster in T-ALL cell lines. Real-time RT-PCR analysis of both miR-17-92 pri-mRNA and mature miRNAs revealed different expression levels in these cells, suggesting a possible implication of the NK-like homeodomain proteins in the regulation of the miR-17-92 cluster in T-ALL. HELA cells transfected with TLX1 or NKX2-5 expression constructs showed elevated miR-17-92 pri-mRNA expression, demonstrating an activating effect. Lentiviral-mediated overexpression of NKX2-5 in the T-ALL cell line MOLT-4 consistently showed increased miR-17-92 pri-mRNA levels and decreased E2F1 protein amounts. For functional analysis of these downstream targets, another T-ALL cell line (PEER) was lentivirally transduced with expression constructs for either miR-17-92 or E2F1, resulting in reduced or elevated E2F1 protein levels, respectively. Overexpression of miR-17-92 or E2F1 did not significantly influenced the cell proliferation. However, induction of apoptosis by treating these cells with etoposide, an inhibitor of topoisomerase II, indicated that overexpression of miR-17-92 and E2F1 resulted in enhanced and reduced cell viability, respectively, as analyzed by MTT assay. In summary, these data indicate an activatory effect of oncogenic NK-like homeodomain proteins on miR-17-92 expression, reducing E2F1 protein levels and thereby enhancing survival of leukemic T-cells.


2015 ◽  
Vol 112 (4) ◽  
pp. 1041-1046 ◽  
Author(s):  
Ki Young Paek ◽  
Ka Young Hong ◽  
Incheol Ryu ◽  
Sung Mi Park ◽  
Sun Ju Keum ◽  
...  

Eukaryotic translation initiation commences at the initiation codon near the 5′ end of mRNA by a 40S ribosomal subunit, and the recruitment of a 40S ribosome to an mRNA is facilitated by translation initiation factors interacting with the m7G cap and/or poly(A) tail. The 40S ribosome recruited to an mRNA is then transferred to the AUG initiation codon with the help of translation initiation factors. To understand the mechanism by which the ribosome finds an initiation codon, we investigated the role of eIF4G in finding the translational initiation codon. An artificial polypeptide eIF4G fused with MS2 was localized downstream of the reporter gene through MS2-binding sites inserted in the 3′ UTR of the mRNA. Translation of the reporter was greatly enhanced by the eIF4G-MS2 fusion protein regardless of the presence of a cap structure. Moreover, eIF4G-MS2 tethered at the 3′ UTR enhanced translation of the second cistron of a dicistronic mRNA. The encephalomyocarditis virus internal ribosome entry site, a natural translational-enhancing element facilitating translation through an interaction with eIF4G, positioned downstream of a reporter gene, also enhanced translation of the upstream gene in a cap-independent manner. Finally, we mathematically modeled the effect of distance between the cap structure and initiation codon on the translation efficiency of mRNAs. The most plausible explanation for translational enhancement by the translational-enhancing sites is recognition of the initiation codon by the ribosome bound to the ribosome-recruiting sites through “RNA looping.” The RNA looping hypothesis provides a logical explanation for augmentation of translation by enhancing elements located upstream and/or downstream of a protein-coding region.


Sign in / Sign up

Export Citation Format

Share Document