The role of microvesicles in cancer progression and drug resistance

2013 ◽  
Vol 41 (1) ◽  
pp. 293-298 ◽  
Author(s):  
Samireh Jorfi ◽  
Jameel M. Inal

Microvesicles are shed constitutively, or upon activation, from both normal and malignant cells. The process is dependent on an increase in cytosolic Ca2+, which activates different enzymes, resulting in depolymerization of the actin cytoskeleton and release of the vesicles. Drug resistance can be defined as the ability of cancer cells to survive exposure to a wide range of anti-cancer drugs, and anti-tumour chemotherapeutic treatments are often impaired by innate or acquired MDR (multidrug resistance). Microvesicles released upon chemotherapeutic agents prevent the drugs from reaching their targets and also mediate intercellular transport of MDR proteins.

2021 ◽  
Vol 14 (2) ◽  
pp. 149
Author(s):  
Ewa Gajda ◽  
Małgorzata Grzanka ◽  
Marlena Godlewska ◽  
Damian Gawel

MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3005
Author(s):  
Steffan T. Nawrocki ◽  
Wei Wang ◽  
Jennifer S. Carew

Autophagy is a mechanism of lysosomal proteolysis that is utilized to degrade damaged organelles, proteins, and other cellular components. Although key studies demonstrate that autophagy functions as a mechanism of tumor suppression via the degradation of defective pre-malignant cells, autophagy can also be used as a mechanism to break down cellular components under stress conditions to generate the required metabolic materials for cell survival. Autophagy has emerged as an important mediator of resistance to radiation, chemotherapy, and targeted agents. This series of articles highlight the role of autophagy in cancer progression and drug resistance and underscores the need for new and more effective agents that target this process.


2020 ◽  
Vol 21 (18) ◽  
pp. 6818
Author(s):  
Narasimha M. Beeraka ◽  
Shalini H. Doreswamy ◽  
Surya P. Sadhu ◽  
Asha Srinivasan ◽  
Rajeswara Rao Pragada ◽  
...  

Exosomes exhibit a wide range of biological properties and functions in the living organisms. They are nanometric vehicles and used for delivering drugs, as they are biocompatible and minimally immunogenic. Exosomal secretions derived from cancer cells contribute to metastasis, immortality, angiogenesis, tissue invasion, stemness and chemo/radio-resistance. Exosome-derived microRNAs (miRNAs) and long non-coding RNAs (lnc RNAs) are involved in the pathophysiology of cancers and neurodegenerative diseases. For instance, exosomes derived from mesenchymal stromal cells, astrocytes, macrophages, and acute myeloid leukemia (AML) cells are involved in the cancer progression and stemness as they induce chemotherapeutic drug resistance in several cancer cells. This review covered the recent research advances in understanding the role of exosomes in cancer progression, metastasis, angiogenesis, stemness and drug resistance by illustrating the modulatory effects of exosomal cargo (ex. miRNA, lncRNAs, etc.) on cell signaling pathways involved in cancer progression and cancer stem cell growth and development. Recent reports have implicated exosomes even in the treatment of several cancers. For instance, exosomes-loaded with novel anti-cancer drugs such as phytochemicals, tumor-targeting proteins, anticancer peptides, nucleic acids are known to interfere with drug resistance pathways in several cancer cell lines. In addition, this review depicted the need to develop exosome-based novel diagnostic biomarkers for early detection of cancers and neurodegenerative disease. Furthermore, the role of exosomes in stroke and oxidative stress-mediated neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) is also discussed in this article.


2018 ◽  
Vol 18 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Ning Ding ◽  
Hong Zhang ◽  
Shan Su ◽  
Yumei Ding ◽  
Xiaohui Yu ◽  
...  

Background: Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective: Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method: CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results: Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drugresistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion: This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes.


2021 ◽  
Vol 704 ◽  
pp. 108890
Author(s):  
Debojyoti Pal ◽  
Archita Rai ◽  
Rahul Checker ◽  
R.S. Patwardhan ◽  
Babita Singh ◽  
...  

Author(s):  
Emdormi Rymbai ◽  

Plants are an important source of natural products and they play a vital role in the field of medicinal chemistry and pharmaceutical science. Traditional medicines have been practiced and used for thousands of years, mostly in Asian countries, where plants are the main sources of medicine. Houttuynia cordata, a herb that belongs to the family Saururaceae, has a wide range of pharmacological activities and is used traditionally in conditions like anisolobis sores, heatstroke, lung carbuncles, malaria, scrotal abscess, tonsillitis, salammoniac poison and has also been widely accepted to possess anti-cancer, anti-oxidant, anti-hypertension, anti-inflammatory, anti-mutagenic, antibacterial, anti-viral and anti-purulent activity. Moreover, it is one of the herbs that was recognized during pandemic outbreaks, such as Severe Acute Respiratory Syndrome Coronavirus (SARS CoV) in China, virulent Newcastle Disease Virus (VNDV) in Java (Indonesia) and Newcastle (England). In this review, we briefly discuss the role of H. cordata as an anti-viral agent and the possibility of developing a dosage form against Coronavirus disease-19 (COVID-19).


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Carolina Soekmadji ◽  
Colleen C. Nelson

Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.


Author(s):  
Xuan-Yu Chen ◽  
Jing-Quan Wang ◽  
Yuqi Yang ◽  
Jing Li ◽  
Zhe-Sheng Chen

Background: To date, many compounds extracting from natural products have anti-tumor activity, such as citronellol, ellagitannin-containing pomegranate extract, etc. Evidence from clinical context shows that multidrug resistance is an obstacle that impedes the effectiveness of natural products, such as chemotherapeutic agents paclitaxel and vincristine. Overexpression of ATP-Binding Cassette (ABC) transporters is the leading cause of MDR. Therefore, it is crucial to investigate whether these natural products are substrates of MDR-associated ABC transporters, which may benefit the development of their clinical usage. Objective: This review summarizes the latest insight on natural products possessing substrate profile and analyzed some possible regularity to provide direction for future drug discovery. Conclusion: The anti-tumor effects of natural products are constantly being explored, but the drug resistance issues cannot be ignored, which limits their prospects as anti-tumor drugs to a certain extent. At the same time, some natural products are taken as a daily diet, and their possible role in increasing the drug resistance of the substrate should arouse the attention of clinical cancer patients.


2020 ◽  
Vol 21 (15) ◽  
pp. 5353 ◽  
Author(s):  
Hsiuying Wang

Colorectal cancer (CRC) is the third leading cause of cancer death in the world, and its incidence is rising in developing countries. Treatment with 5-Fluorouracil (5-FU) is known to improve survival in CRC patients. Most anti-cancer therapies trigger apoptosis induction to eliminate malignant cells. However, de-regulated apoptotic signaling allows cancer cells to escape this signaling, leading to therapeutic resistance. Treatment resistance is a major challenge in the development of effective therapies. The microRNAs (miRNAs) play important roles in CRC treatment resistance and CRC progression and apoptosis. This review discusses the role of miRNAs in contributing to the promotion or inhibition of apoptosis in CRC and the role of miRNAs in modulating treatment resistance in CRC cells.


2012 ◽  
Vol 32 (02) ◽  
pp. 95-104 ◽  
Author(s):  
C. Bokemeyer ◽  
F. Langer

SummaryCancer is characterized by bidirectional interrelations between tumour progression, coagulation activation, and inflammation. Tissue factor (TF), the principal initiator of the coagulation protease cascade, is centrally positioned in this complex triangular network due to its pleiotropic effects in haemostasis, angiogenesis, and haematogenous metastasis. While formation of macroscopic thrombi is the correlate of cancer-associated venous thromboembolism (VTE), a major healthcare burden in clinical haematology and oncology, microvascular thrombosis appears to be critically important to blood-borne tumour cell dissemination. In this regard, expression of TF in malignant tissues as well as shedding of TFbearing microparticles into the circulation are thought to be regulated by defined genetic events relevant to pathological cancer progression, thus directly linking Trousseau’s syndrome to molecular tumourigenesis.Because pharmacological inhibition of the TF pathway in selective tumour types and patient subgroups would be in line with the modern concept of individualized, targeted anti-cancer therapy, this review will focus on the role of TF in tumour biology and cancer-associated VTE.


Sign in / Sign up

Export Citation Format

Share Document