Mitochondrial protein 18 is a positive apoptotic regulator in cardiomyocytes under oxidative stress

2019 ◽  
Vol 133 (9) ◽  
pp. 1067-1084 ◽  
Author(s):  
Lynn H.H. Aung ◽  
Yu-Zhen Li ◽  
Hua Yu ◽  
Xiatian Chen ◽  
Zhongjie Yu ◽  
...  

AbstractAccumulation of reactive oxygen species is a common phenomenon in cardiac stress conditions, for instance, coronary artery disease, aging-related cardiovascular abnormalities, and exposure to cardiac stressors such as hydrogen peroxide (H2O2). Mitochondrial protein 18 (Mtp18) is a novel mitochondrial inner membrane protein, shown to involve in the regulation of mitochondrial dynamics. Although Mtp18 is abundant in cardiac muscles, its role in cardiac apoptosis remains elusive. The present study aimed to detect the role of Mtp18 in H2O2-induced mitochondrial fission and apoptosis in cardiomyocytes. We studied the effect of Mtp18 in cardiomyocytes by modulating its expression with lentiviral construct of Mtp18-shRNA and Mtp18 c-DNA, respectively. We then analyzed mitochondrial morphological dynamics with MitoTracker Red staining; apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) and cell death detection assays; and protein expression with immunoblotting. Here, we observed that Mtp18 could regulate oxidative stress- mediated mitochondrial fission and apoptosis in cardiac myocytes. Mechanistically, we found that Mtp8 induced mitochondrial fission and apoptosis by enhancing dynamin-related protein 1 (Drp1) accumulation. Conversely, knockdown of Mtp18 interfered with Drp1-associated mitochondrial fission and subsequent activation of apoptosis in both HL-1 cells and primary cardiomyocytes. However, overexpression of Mtp18 alone was not sufficient to execute apoptosis when Drp1 was minimally expressed, suggesting that Mtp18 and Drp1 are interdependent in apoptotic cascade. Together, these data highlight the role of Mtp18 in cardiac apoptosis and provide a novel therapeutic insight to minimize cardiomyocyte loss via targetting mitochondrial dynamics.

Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 522 ◽  
Author(s):  
Wang ◽  
Xiao ◽  
Huang ◽  
Liu

In this study, cell death induced by the oxidant tert-butylhydroperoxide (tBH) was observed in U2OS cells; this phenotype was rescued by Syntaxin 17 (STX17) knockout (KO) but the mechanism is unknown. STX17 plays dual roles in autophagosome–lysosome fusion and mitochondrial fission. However, the contribution of the two functions of STX17 to apoptosis has not been extensively studied. Here, we sought to dissect the dual roles of STX17 in oxidative-stress-induced apoptosis by taking advantage of STX17 knockout cells and an autophagosome–lysosome fusion defective mutant of STX17. We generated STX17 knockout U2OS cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and the STX17 knockout cells were reconstituted with wild-type STX17 and its autophagosome–lysosome fusion defective mutant. Autophagy was assessed by autophagic flux assay, Monomer red fluorescent protein (mRFP)–GFP–LC3 assay and protease protection assay. Golgi, endoplasmic reticulum (ER)/ER–Golgi intermediate compartment (ERGIC) and mitochondrial dynamics were examined by staining the different indicator proteins. Apoptosis was evaluated by caspase cleavage assay. The general reactive oxygen species (ROS) were detected by flow cytometry. In STX17 complete knockout cells, sealed autophagosomes were efficiently formed but their fusion with lysosomes was less defective. The fusion defect was rescued by wild-type STX17 but not the autophagosome–lysosome fusion defective mutant. No obvious defects in Golgi, ERGIC or ER dynamics were observed. Mitochondria were significantly elongated, supporting a role of STX17 in mitochondria fission and the elongation caused by STX17 KO was reversed by the autophagosome–lysosome fusion defective mutant. The clearance of protein aggregation was compromised, correlating with the autophagy defect but not with mitochondrial dynamics. This study revealed a mixed role of STX17 in autophagy, mitochondrial dynamics and oxidative stress response. STX17 knockout cells were highly resistant to oxidative stress, largely due to the function of STX17 in mitochondrial fission rather than autophagy.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 43 ◽  
Author(s):  
Junhua Yang ◽  
Wenbo Guo ◽  
Jianhua Wang ◽  
Xianli Yang ◽  
Zhiqi Zhang ◽  
...  

T-2 toxin, as a highly toxic mycotoxin to humans and animals, induces oxidative stress and apoptosis in various cells and tissues. Apoptosis and mitochondrial fusion/fission are two tightly interconnected processes that are crucial for maintaining physiological homeostasis. However, the role of mitochondrial fusion/fission in apoptosis of T-2 toxin remains unknown. Hence, we aimed to explore the putative role of mitochondrial fusion/fission on T-2 toxin induced apoptosis in normal human liver (HL-7702) cells. T-2 toxin treatment (0, 0.1, 1.0, or 10 μg/L) for 24 h caused decreased cell viability and ATP concentration and increased production of (ROS), as seen by a loss of mitochondrial membrane potential (∆Ψm) and increase in mitochondrial fragmentation. Subsequently, the mitochondrial dynamic imbalance was activated, evidenced by a dose-dependent decrease and increase in the protein expression of mitochondrial fusion (OPA1, Mfn1, and Mfn2) and fission (Drp1 and Fis1), respectively. Furthermore, the T-2 toxin promoted the release of cytochrome c from mitochondria to cytoplasm and induced cell apoptosis triggered by upregulation of Bax and Bax/Bcl-2 ratios, and further activated the caspase pathways. Taken together, these results indicate that altered mitochondrial dynamics induced by oxidative stress with T-2 toxin exposure likely contribute to mitochondrial injury and HL-7702 cell apoptosis.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 85 ◽  
Author(s):  
Hao Zhou ◽  
Sam Toan

Mitochondria are key regulators of cell fate through controlling ATP generation and releasing pro-apoptotic factors. Cardiac ischemia/reperfusion (I/R) injury to the coronary microcirculation has manifestations ranging in severity from reversible edema to interstitial hemorrhage. A number of mechanisms have been proposed to explain the cardiac microvascular I/R injury including edema, impaired vasomotion, coronary microembolization, and capillary destruction. In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. It is clear that abnormal mitochondrial signatures, including mitochondrial oxidative stress, mitochondrial fission, mitochondrial fusion, and mitophagy, play a substantial role in endothelial cell function. While the pathogenic role of each of these mitochondrial alterations in the endothelial cells I/R injury remains complex, profiling of mitochondrial oxidative stress and mitochondrial dynamics in endothelial cell dysfunction may offer promising potential targets in the search for novel diagnostics and therapeutics in cardiac microvascular I/R injury. The objective of this review is to discuss the role of mitochondrial oxidative stress on cardiac microvascular endothelial cells dysfunction. Mitochondrial dynamics, including mitochondrial fission and fusion, are critically discussed to understand their roles in endothelial cell survival. Finally, mitophagy, as a degradative mechanism for damaged mitochondria, is summarized to figure out its contribution to the progression of microvascular I/R injury.


Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


2019 ◽  
Vol 2 (4) ◽  
pp. e201900308 ◽  
Author(s):  
Shun Nagashima ◽  
Keisuke Takeda ◽  
Nobuhiko Ohno ◽  
Satoshi Ishido ◽  
Motohide Aoki ◽  
...  

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Sudipta Biswas ◽  
Liang Xin ◽  
Soumya Panigrahi ◽  
Alejandro Zimman ◽  
Valentin Yakubenko ◽  
...  

A prothrombotic state and increased platelet reactivity are common in hyperlipidemia and oxidative stress. Lipid peroxidation, a major consequence of oxidative stress, generates highly reactive products including hydroxy-w-oxoalkenoic acids that modify autologous proteins generating biologically active derivatives. Phosphatidylethanolamine, the second most abundant eukaryotic phospholipid can also be modified by hydroxy-w-oxoalkenoic acids. However, the conditions leading to accumulation of such derivatives in circulation and their biological activities remain poorly understood. We now show that carboxyalkylpyrrole-phosphatidylethanolamine derivatives (CAP-PE) accumulate in plasma of hyperlipidemic ApoE -/- mice. CAP-PE directly bind to TLR2 and induce platelet integrin alpha 2b beta 3 activation and P-selectin expression in TLR2 dependent manner. Platelet activation by CAP-PE includes assembly of TLR2/TLR1 receptor complex, induction of downstream signaling via MyD88/TIRAP, phosphorylation of IRAK4, and subsequent activation of TRAF6. This in turn activates the Src family kinases, Syk and PLC gamma 2 and platelet integrins. By intravital thrombosis studies we have demonstrated that CAP-PE accelerate thrombosis in TLR2 dependent manner. Furthermore, we demonstrate that TLR2 deficient mice are protected from accelerated thrombosis induced by hyperlipidemia. Taken together, our studies demonstrate a cross-talk between innate immunity and integrin activation signaling pathways in platelets and reveal that TLR2 plays a key role in platelet hyperreactivity and prothrombotic state in hyperlipidemia.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xinyu Yang ◽  
Tianmai He ◽  
Songjie Han ◽  
Xiaoyu Zhang ◽  
Yang Sun ◽  
...  

Oxidative stress has been closely related with coronary artery disease. In coronary heart disease (CHD), an excess of reactive oxygen species (ROS) production generates endothelial cell and smooth muscle functional disorders, leading to a disequilibrium between the antioxidant capacity and prooxidants. ROS also leads to inflammatory signal activation and mitochondria-mediated apoptosis, which can promote and increase the occurrence and development of CHD. There are several kinds of antioxidative and small molecular systems of antioxidants, such as β-carotene, ascorbic acid, α-tocopherol, and reduced glutathione (GSH). Studies have shown that antioxidant treatment was effective and decreased the risk of CHD, but the effect of the treatment varies greatly. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of cardiovascular diseases. This review will concentrate on the evidence of the action mechanism of TCM in preventing CHD by modulating oxidative stress-related signaling pathways.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Sonia Sifuentes-Franco ◽  
Fermín Paul Pacheco-Moisés ◽  
Adolfo Daniel Rodríguez-Carrizalez ◽  
Alejandra Guillermina Miranda-Díaz

Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.


2013 ◽  
Vol 305 (8) ◽  
pp. R927-R938 ◽  
Author(s):  
Boa Kim ◽  
Ji-Seok Kim ◽  
Yisang Yoon ◽  
Mayra C. Santiago ◽  
Michael D. Brown ◽  
...  

Mitochondria are dynamic organelles forming a tubular network that is continuously fusing and dividing to control their morphology and functions. Recent literature has shed new light on a potential link between the dynamic behavior of mitochondria and muscle development. In this study, we investigate the role of mitochondrial fission factor dynamin-related protein 1 (Drp1) in myogenic differentiation. We found that differentiation of C2C12 myoblasts induced by serum starvation was accompanied by a gradual increase in Drp1 protein expression (to ∼350% up to 3 days) and a fast reduction of Drp1 phosphorylation at Ser-637 (to ∼30%) resulting in translocation of Drp1 protein from the cytosol to mitochondria. During differentiation, treatment of myoblasts with mitochondrial division inhibitor ( mdivi-1), a specific inhibitor of Drp1 GTPase activity, caused extensive formation of elongated mitochondria, which coincided with increased apoptosis evidenced by both enhanced caspase-3 activity and increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Furthermore, the mdivi-1-treated myotubes ( day 3 in differentiation media) showed a reduction in mitochondrial DNA content, mitochondrial mass, and membrane potential in a dose-dependent manner indicating defects in mitochondrial biogenesis during myogenic differentiation. Most interestingly, mdivi-1 treatment significantly suppressed myotube formation in both C2C12 cells and primary myoblasts. Likewise, stable overexpression of a dominant negative mutant Drp1 (K38A) dramatically reduced myogenic differentiation. These data suggest that Drp-1-dependent mitochondrial division is a necessary step for successful myogenic differentiation, and perturbation of mitochondrial dynamics hinders normal mitochondrial adaptations during muscle development. Therefore, in the present study, we report a novel physiological role of mitochondrial dynamics in myogenic differentiation.


2021 ◽  
Author(s):  
Arubala P Reddy ◽  
Xiangling Yin ◽  
Neha Sawant ◽  
P Hemachandra Reddy

Abstract The purpose of this study is to study the neuroprotective role of selective serotonin reuptake inhibitor (SSRI), citalopram against Alzheimer’s disease (ad). Multiple SSRIs, including citalopram are reported to treat patients with depression, anxiety, and ad. However, their protective cellular mechanisms have not been studied completely. In the current study, we investigated the protective role of citalopram against impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective mitophagy, and synaptic dysfunction in immortalized mouse primary hippocampal cells (HT22) expressing mutant APP (SWI/IND) mutations. Using quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed mutant full-length APP/C-terminal fragments and Aβ levels and mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy, and synaptic genes in mAPP-HT22 cells and mAPP-HT22 cells treated with citalopram. Increased levels of mRNA levels of mitochondrial fission genes, decreased levels of fusion biogenesis, autophagy, mitophagy and synaptic genes were found in mAPP-HT22 cells relative to WT-HT22 cells. However, in mAPP-HT22 cells treated with citalopram compared to mAPP-HT22 cells, revealed reduced levels of the mitochondrial fission genes, increased fusion, biogenesis, autophagy, mitophagy, and synaptic genes. Our protein data agrees with mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells; these were reversed in citalopram treated mAPP-HT22 cells. Cell survival rates were increased in citalopram treated mAPP-HT22 relative to citalopram-untreated mAPP-HT22. Further, mAPP and C-terminal fragments were also reduced in citalopram treated cells. These findings suggest that citalopram reduces mutant APP and Aβ and mitochondrial toxicities and may have a protective role of mutant APP and Aβ-induced injuries in patients with depression, anxiety, and ad.


Sign in / Sign up

Export Citation Format

Share Document