scholarly journals Comparison of Videostroboscopy to Stroboscopy Derived From High-Speed Videoendoscopy for Evaluating Patients With Vocal Fold Mass Lesions

2016 ◽  
Vol 25 (4) ◽  
pp. 576-589 ◽  
Author(s):  
Maria E. Powell ◽  
Dimitar D. Deliyski ◽  
Robert E. Hillman ◽  
Steven M. Zeitels ◽  
James A. Burns ◽  
...  

Purpose Videostroboscopy (VS) uses an indirect physiological signal to predict the phase of the vocal fold vibratory cycle for sampling. Simulated stroboscopy (SS) extracts the phase of the glottal cycle directly from the changing glottal area in the high-speed videoendoscopy (HSV) image sequence. The purpose of this study is to determine the reliability of SS relative to VS for clinical assessment of vocal fold vibratory function in patients with mass lesions. Methods VS and SS recordings were obtained from 28 patients with vocal fold mass lesions before and after phonomicrosurgery and 17 controls who were vocally healthy. Two clinicians rated clinically relevant vocal fold vibratory features using both imaging techniques, indicated their internal level of confidence in the accuracy of their ratings, and provided reasons for low or no confidence. Results SS had fewer asynchronous image sequences than VS. Vibratory outcomes were able to be computed for more patients using SS. In addition, raters demonstrated better interrater reliability and reported equal or higher levels of confidence using SS than VS. Conclusion Stroboscopic techniques on the basis of extracting the phase directly from the HSV image sequence are more reliable than acoustic-based VS. Findings suggest that SS derived from high-speed videoendoscopy is a promising improvement over current VS systems.

Author(s):  
Matthias Echternach ◽  
Michael Döllinger ◽  
Marie Köberlein ◽  
Liudmila Kuranova ◽  
Donata Gellrich ◽  
...  

Abstract Introduction Vocal fold mass lesions can affect vocal fold oscillation patterns and therefore voice production. It has been previously observed that perturbation values from audio signals were lower with increased loudness. However, how much the oscillation patterns change with gradual alteration of loudness is not yet fully understood. Material and methods Eight patients with vocal fold mass lesions were asked to perform a glide from minimum to maximum loudness on the vowel /i/, ƒo of 125 Hz for male or 250 Hz for female voices. During phonation the subjects were simultaneously recorded with transnasal high speed videoendoscopy (HSV, 20,000 fps), electroglottography (EGG), and an audio recording. Based on the HSV material the Glottal Area Waveform (GAW) was segmented and GAW parameters were computed. Results The greatest vocal fold irregularities were observed at different values between minimum and maximum sound pressure level. There was a relevant discrepancy between the HSV and EGG derived open quotients. Furthermore, the EGG derived sample entropy and GAW values also evidenced different behavior. Conclusions The amount of vocal fold irregularity changes with varying loudness. Therefore, any evaluation of the voice should be performed under different loudness conditions. The discrepancy between EGG and GAW values appears to be much stronger in patients with vocal fold mass lesions than those with normal physiological conditions. Level of evidence 4.


2020 ◽  
Vol 34 (5) ◽  
pp. 769-782 ◽  
Author(s):  
Maria E. Powell ◽  
Dimitar D. Deliyski ◽  
Steven M. Zeitels ◽  
James A. Burns ◽  
Robert E. Hillman ◽  
...  

Author(s):  
Yongmei Liu ◽  
Rajen Dias

Abstract Study presented here has shown that Infrared thermography has the potential to be a nondestructive analysis tool for evaluating package sublayer defects. Thermal imaging is achieved by applying pulsed external heating to the package surface and monitoring the surface thermal response as a function of time with a high-speed IR camera. Since the thermal response of the surface is affected by the defects such as voids and delamination below the package surface, the technique can be used to assist package defects detection and analysis.


2021 ◽  
pp. 019459982198960
Author(s):  
Tiffany V. Wang ◽  
Nat Adamian ◽  
Phillip C. Song ◽  
Ramon A. Franco ◽  
Molly N. Huston ◽  
...  

Objectives (1) Demonstrate true vocal fold (TVF) tracking software (AGATI [Automated Glottic Action Tracking by artificial Intelligence]) as a quantitative assessment of unilateral vocal fold paralysis (UVFP) in a large patient cohort. (2) Correlate patient-reported metrics with AGATI measurements of TVF anterior glottic angles, before and after procedural intervention. Study Design Retrospective cohort study. Setting Academic medical center. Methods AGATI was used to analyze videolaryngoscopy from healthy adults (n = 72) and patients with UVFP (n = 70). Minimum, 3rd percentile, 97th percentile, and maximum anterior glottic angles (AGAs) were computed for each patient. In patients with UVFP, patient-reported outcomes (Voice Handicap Index 10, Dyspnea Index, and Eating Assessment Tool 10) were assessed, before and after procedural intervention (injection or medialization laryngoplasty). A receiver operating characteristic curve for the logistic fit of paralysis vs control group was used to determine AGA cutoff values for defining UVFP. Results Mean (SD) 3rd percentile AGA (in degrees) was 2.67 (3.21) in control and 5.64 (5.42) in patients with UVFP ( P < .001); mean (SD) 97th percentile AGA was 57.08 (11.14) in control and 42.59 (12.37) in patients with UVFP ( P < .001). For patients with UVFP who underwent procedural intervention, the mean 97th percentile AGA decreased by 5 degrees from pre- to postprocedure ( P = .026). The difference between the 97th and 3rd percentile AGA predicted UVFP with 77% sensitivity and 92% specificity ( P < .0001). There was no correlation between AGA measurements and patient-reported outcome scores. Conclusions AGATI demonstrated a difference in AGA measurements between paralysis and control patients. AGATI can predict UVFP with 77% sensitivity and 92% specificity.


2021 ◽  
Vol 11 (4) ◽  
pp. 1817
Author(s):  
Zheng Li ◽  
Azure Wilson ◽  
Lea Sayce ◽  
Amit Avhad ◽  
Bernard Rousseau ◽  
...  

We have developed a novel surgical/computational model for the investigation of unilat-eral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10–11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction, and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides was consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5279
Author(s):  
Dong-Hoon Kwak ◽  
Guk-Jin Son ◽  
Mi-Kyung Park ◽  
Young-Duk Kim

The consumption of seaweed is increasing year by year worldwide. Therefore, the foreign object inspection of seaweed is becoming increasingly important. Seaweed is mixed with various materials such as laver and sargassum fusiforme. So it has various colors even in the same seaweed. In addition, the surface is uneven and greasy, causing diffuse reflections frequently. For these reasons, it is difficult to detect foreign objects in seaweed, so the accuracy of conventional foreign object detectors used in real manufacturing sites is less than 80%. Supporting real-time inspection should also be considered when inspecting foreign objects. Since seaweed requires mass production, rapid inspection is essential. However, hyperspectral imaging techniques are generally not suitable for high-speed inspection. In this study, we overcome this limitation by using dimensionality reduction and using simplified operations. For accuracy improvement, the proposed algorithm is carried out in 2 stages. Firstly, the subtraction method is used to clearly distinguish seaweed and conveyor belts, and also detect some relatively easy to detect foreign objects. Secondly, a standardization inspection is performed based on the result of the subtraction method. During this process, the proposed scheme adopts simplified and burdenless calculations such as subtraction, division, and one-by-one matching, which achieves both accuracy and low latency performance. In the experiment to evaluate the performance, 60 normal seaweeds and 60 seaweeds containing foreign objects were used, and the accuracy of the proposed algorithm is 95%. Finally, by implementing the proposed algorithm as a foreign object detection platform, it was confirmed that real-time operation in rapid inspection was possible, and the possibility of deployment in real manufacturing sites was confirmed.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750064 ◽  
Author(s):  
A. Van Hirtum ◽  
X. Pelorson

Experiments on mechanical deformable vocal folds replicas are important in physical studies of human voice production to understand the underlying fluid–structure interaction. At current date, most experiments are performed for constant initial conditions with respect to structural as well as geometrical features. Varying those conditions requires manual intervention, which might affect reproducibility and hence the quality of experimental results. In this work, a setup is described which allows setting elastic and geometrical initial conditions in an automated way for a deformable vocal fold replica. High-speed imaging is integrated in the setup in order to decorrelate elastic and geometrical features. This way, reproducible, accurate and systematic measurements can be performed for prescribed initial conditions of glottal area, mean upstream pressure and vocal fold elasticity. Moreover, quantification of geometrical features during auto-oscillation is shown to contribute to the experimental characterization and understanding.


2013 ◽  
Vol 344 ◽  
pp. 107-110
Author(s):  
Shun Ren Hu ◽  
Ya Chen Gan ◽  
Ming Bao ◽  
Jing Wei Wang

For the physiological signal monitoring applications, as a micro-controller based on field programmable gate array (FPGA) physiological parameters intelligent acquisition system is given, which has the advantages of low cost, high speed, low power consumption. FPGA is responsible for the completion of pulse sensor, the temperature sensor, acceleration sensor data acquisition and serial output and so on. Focuses on the design ideas and architecture of the various subsystems of the whole system, gives the internal FPGA circuit diagram of the entire system. The whole system is easy to implement and has a very good promotional value.


Sign in / Sign up

Export Citation Format

Share Document