scholarly journals Extracellular matrix and integrin-signaling in the regulation of cell growth

1999 ◽  
Vol 56 (4) ◽  
pp. 1188-1189
Author(s):  
Richard K. Assoian
RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


Langmuir ◽  
2018 ◽  
Vol 34 (30) ◽  
pp. 8709-8730 ◽  
Author(s):  
Michael J. Landry ◽  
Frédéric-Guillaume Rollet ◽  
Timothy E. Kennedy ◽  
Christopher J. Barrett

2018 ◽  
Vol 9 (31) ◽  
pp. 6516-6522 ◽  
Author(s):  
Yupeng Sun ◽  
Kaixiang Zhang ◽  
Ruijie Deng ◽  
Xiaojun Ren ◽  
Can Wu ◽  
...  

Graphene oxide/polyacrylamide composite scaffolds with tunable stiffness are designed and fabricated to investigate the effect of extracellular matrix (ECM) stiffness on cytoskeleton assembly and specific gene expression during cell growth.


1997 ◽  
Vol 272 (3) ◽  
pp. L413-L417 ◽  
Author(s):  
I. Y. Adamson ◽  
L. Young ◽  
J. Bakowska

The growth of alveolar type II cells was studied when these cells were maintained for 2 days on a pulmonary endothelium-derived extracellular matrix (ECM) on a filter with or without lung fibroblasts in the lower chambers of culture wells. Type II cell proliferation was enhanced by the ECM compared with other substrates but was significantly higher with fibroblasts beneath. This was determined by thymidine uptake and cell numbers. The diffusing factor from fibroblasts appeared to be keratinocyte growth factor (KGF), because this cytokine increased type II cell growth in culture and the neutralizing antibody to KGF blocked the observed fibroblast-induced growth increase. None of the antibodies to various cytokines had any effect on the ECM-induced proliferation. Although the type II cells were shown to produce degradative activity for the ECM, there was little secreted enzyme activity in supernatants and there was no demonstrated autocrine-regulated growth effect. The results suggest that type II cell growth may be stimulated by both 1) a matrix-bound factor that acts through a cell contact-mediated process, and 2) a fibroblast-secreted factor that appears to be KGF.


2019 ◽  
Vol 19 (5) ◽  
pp. 1900036 ◽  
Author(s):  
Michael J. Landry ◽  
Kaien Gu ◽  
Stephanie N. Harris ◽  
Laila Al‐Alwan ◽  
Laura Gutsin ◽  
...  

2004 ◽  
Vol 16 (2) ◽  
pp. 218 ◽  
Author(s):  
K.B. Stewart ◽  
A.M. Adams ◽  
S.L. Pratt ◽  
S.L. Stice

A porcine trophoblastic cell line could provide a powerful model for understanding trophoblast cell biology as well as placental gene expression and proteomics in vitro. In this experiment, we derived porcine trophoblastic cells from trophectoderm tissue and assessed their growth on three different extracellular matrix substrates and in three different concentrations of human recombinant bone morphogenetic protein 4 (hBMP4). Human BMP4 has been shown to induce differentiation of human embryonic stem cells into trophoblast lineages. Elongated embryos were flushed using DPBS supplemented with 1% fetal calf serum and penicillin-streptomycin (1X) from the hysterectomized uteri of superovulated and bred prepuberal gilts 15 days post-insemination. The embryonic disc was visualized with a dissecting microscope. The trophectoderm tissue was cut 2–3mm away from the embryonic disc with a scalpel and the trophectoderm tissue was manually dissected into cell aggregates. These aggregates were plated on collagen type IV, Matrigel, and human extracellular matrix (laminin, collagen type IV and heparan sulfate proteoglycan derived from human placenta) in culture medium (DMEM with 15% FCS, 0.1mM 2-mercaptoethanol, 4ngmL−1 basic FGF4 and 1X P/S) in the presence or absence of hBMP4 at 0, 10, or 20ngmL−1. Cell outgrowth was observed within 24 hours of culture. After three days of culture, various cell types (based on size and morphology) were present. Among cultures of predominant large cells were colonies of smaller cells with epithelial-type morphology that had a prominent nucleus and a high nuclear-to-cytoplasmic ratio. The epithelial-type cells grew in tight colonies with definite borders and contained cytoplasmic structures resembling lipid-containing vesicles. These colonies initially appeared on all matrices across all hBMP4 concentrations. After seven days in culture the colonies developed distinct differences across groups. Cell growth on collagen was comprised of tight colonies having definite borders among large cells. Colonies on collagen were larger and more pronounced in both the hBMP4-supplemented groups than when cultured without hBMP4. The Matrigel coated plates contained large sheets of epithelial-type cell growth instead of compact colonies. This type of growth characteristic was present in all hBMP4 treatments on Matrigel. In contrast, few cells survived and propagated on human extracellular matrix. Only small colonies having the desired morphology were among the large cells on human extracellular matrix when cultured in medium containing 10ngmL−1 hBMP4. Cells were passaged and only cells growing on Matrigel could be further cultured. These data suggest that both the cell substrate and hBMP4 affect initial trophoblast outgrowths. Further analysis including immunocytochemistry and RT-PCR is currently being performed to better characterize these cells. Epidemiology/Diseases


1996 ◽  
Vol 270 (6) ◽  
pp. L1017-L1022 ◽  
Author(s):  
I. Y. Adamson ◽  
L. Young

Most of the alveolar epithelium overlies a fused basement membrane produced by epithelial and endothelial cells. To determine how this type of matrix influences type II cell growth and function, we studied the effects of culturing isolated rat alveolar type II cells on an extracellular matrix (ECM) freshly produced by pulmonary vascular endothelial cells grown 5 days in culture. Type II cells from the same rats were cultured on plastic or Matrigel for comparison. A large increase in mitotic activity was seen in type II cells grown on the endothelial ECM at 2 days only; thereafter cells spread rapidly to confluence and lost their lamellar bodies. Cells grown on Matrigel remained cuboidal with lamellar bodies but grew more slowly, as judged by [3H]thymidine uptake and cell numbers. Incorporation of labeled choline into disaturated phosphatidylcholine (DSPC) was used as a marker of surfactant synthesis. After the rapid, brief burst of proliferation, type II cells on endothelial ECM showed a sudden decline in DSPC-DNA by day 4 compared with cells grown on matrigel. Binding of the lectin Bauhinia purpurea (BPA) indicated that after a phase of division, cells on endothelial ECM developed as type I epithelium by 4 days of culture, when > 70% of cells stained positively for BPA binding, whereas few cuboidal cells on Matrigel were stained. The results indicate that type II cells respond briefly to growth factors in pulmonary endothelial ECM; then this type of matrix promotes cell spreading with loss of type II function as cells subsequently resemble type I epithelium.


Sign in / Sign up

Export Citation Format

Share Document