scholarly journals The effects of zinc and magnesium ingestion on essential trace-element accumulation in the organs of white rats upon cadmium exposure

2020 ◽  
Vol 27 ◽  
pp. 00110
Author(s):  
Svetlana Nikolaevna Timofeeva ◽  
Ilnur Ravilevich Kadikov ◽  
Andrey Aleksandrovich Korchemkin ◽  
Iskander Foatovich Vafin

Due to high athropogenic loads on the environment, issues surrounding public health and safety in consumable products are being raised with ever-increasing frequency. One toxic metal, whose consumption results in irreparable harm to the health of animals and human is cadmium. To antagonize such toxic effects to human health, magnesium and zinc are considered being essential elements and their combination effects warrant further studies. To this end, we developed a Wistar rat model to look at the combinatorial effects of cadmium with magnesium and zinc consumption on the accumulation of iron and zinc ions in kidney and liver tissues. Our findings suggested that exposure to cadmium ions reduced zinc ion levels in the liver and kidneys, reduced iron ions in the liver (but were increased in the kidneys), decreased magnesium ions in the kidneys but increased their levels within the liver. Moreover, while the consumption of magnesium and zinc ions individually, partially reduced the effects caused by cadmium consumption alone, the simultaneous consumption of zinc and magnesium ions proved to be significantly more effective.

1960 ◽  
Vol 43 (6) ◽  
pp. 1149-1169 ◽  
Author(s):  
M. Kunitz

Purified chicken intestinal alkaline phosphatase is active at pH 8 to 9, but becomes rapidly inactivated with change of pH to 6 or less. Also, a solution of the inactivated enzyme at pH 4.5 rapidly regains its activity at pH 8. In the range of pH 6 to 8 a solution of purified alkaline phosphatase consists of a mixture of active and inactive enzyme in equilibrium with each other. The rate of inactivation at lower pH and of reactivation at higher pH increases with increase in temperature. Also, the activity at equilibrium in the range of pH 6 to 8 increases with temperature so that a solution equilibrated at higher temperature loses part of its activity on cooling, and vice versa, a rise in temperature shifts the equilibrium toward higher activity. The kinetics of inactivation of the enzyme at lower pH and the reactivation at higher pH is that of a unimolecular reaction. The thermodynamic values for the heat and entropy of the reversible inactivation and reactivation of the enzyme are considerably lower than those observed for the reversible denaturation of proteins. The inactivated enzyme at pH 4 to 6 is rapidly reactivated on addition of Zn ions even at pH 4 to 6. However, zinc ions are unable to replace magnesium ions as cocatalysts for the enzymatic hydrolysis of organic phosphates by alkaline phosphatase.


2021 ◽  
Vol 13 (4) ◽  
pp. 656-661
Author(s):  
Yiyan Lv ◽  
Qiwei Zhan ◽  
Xiaoniu Yu

Microbial-induced degradation of aromatic organic compounds and mineralization of zinc ions have attracted much attention because of its low cost, simple operation and quick response. This research, toluene was decomposed and made the concentration of carbonate ions increased accordingly by the enzymatic pressing of microorganisms, meanwhile carbonate ions mineralized zinc ions into carbonate precipitations. The composition and microstructure were analyzed systematically. The analysis results indicated that carbonate precipitations, basic zinc carbonate, could be successfully prepared by microbial method. The particle size of basic zinc carbonate was nanometer, and its shape was near-spherical. Furthermore, the phase composition, functional groups and surface morphology of the precipitations prepared by different methods were basically the same. This work provided a new method for remediation of zinc ion pollution based on the degradation of toluene.


2010 ◽  
Vol 7 (3) ◽  
pp. 1193-1201
Author(s):  
Baghdad Science Journal

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.


2019 ◽  
Vol 111 ◽  
pp. 1277-1289 ◽  
Author(s):  
Karolina Wojtunik-Kulesza ◽  
Anna Oniszczuk ◽  
Monika Waksmundzka-Hajnos

1991 ◽  
Vol 23 (3) ◽  
pp. 293-307 ◽  
Author(s):  
Dennis H. Brown ◽  
Rosalie M. Brown

AbstractA number of physiological processes relevant to the role of lichens in mineral cycling are discussed. Consideration is given to the cellular location of positively-charged cations, showing (a) the benefits of quantifying intracellular elements for the interpretation of toxic metal stress, and (b) how distribution patterns of physiologically essential elements may be altered by desiccation and rehydration under field and laboratory conditions. The quantitative significance of these dynamic processes associated with metal uptake and loss requires verification under field conditions. A modified sequential elution procedure is proposed that enables quantification of insoluble paniculate mineral matter (acquired by wet and dry deposition) in addition to soluble elements in intercellular, extracellular-exchangeable and intracellular sites.


2017 ◽  
Vol 41 (17) ◽  
pp. 8828-8836 ◽  
Author(s):  
Fereshteh Fereidoonipour ◽  
Hamid Reza Rajabi

Here, a new flow injection analysis-solid phase extraction (FIA-SPE) technique was developed by using zinc ion imprinted polymeric nanoparticles (Zn-IIP NPs) for the separation and preconcentration of Zn2+ions from aqueous solutions.


2012 ◽  
Vol 14 (3) ◽  
pp. 29-37 ◽  
Author(s):  
A. Ansari ◽  
M.A. Mehrabian ◽  
H. Hashemipour

The literature devoted to numerical investigation of adsorption of heavy metal ions on carbon nanotubes is scarce. In this paper molecular dynamics is used to simulate the adsorption process and to investigate the effect of the infl uencing parameters on the rate of adsorption. The predictions of the molecular dynamics simulation show that the adsorption process is improved with increasing the temperature, pH of solution, the mass of nanotubes, and surface modifi cation of CNT using hydroxyl and carboxyl functional groups. The results predicted by the model are compared with the experimental results available in the literature; the close agreement validates the accuracy of the predictions. This study reveals that the water layers around the carbon nanotubes and the interaction energies play important roles in the adsorption process. The study also shows that electrostatic force controls the attraction of zinc ions on the nanotube sidewall.


Sign in / Sign up

Export Citation Format

Share Document