scholarly journals The impact of a recultivation layer on the restoration of plant communities

2021 ◽  
Vol 31 ◽  
pp. 00030
Author(s):  
Vladimir Ufimtsev ◽  
Vladimir Androkhanov ◽  
Svetlana Ovsyannikova

Areas of coal mining dumps naturally overgrowing with vegetation in the dry-steppe (Khakassia), forest-steppe (Krasnoyarsk Krai, Kansk-Achinsk Fuel and Energy Complex, KAFEC) and subtaiga (Kemerovo region, Kuzbass) subzones were investigated. The environmental and cenotic characteristics of herbaceous communities were studied in experimental sites following the application of a fertile soil layer and in technogenic eluviums without soil improvers. The application of a fertile soil layer was found to increase both the species abundance and the projective cover of zonal species. Thus, the presence of a humus horizon promotes the formation of herbaceous ecosystems. However, this is not an unconditional factor that these ecosystems would reach the stage of zonal formations.

Author(s):  
Г. П. Довгаль

У статті на прикладі типових аграрних підприємств зони Лісостепу здійснено комплексний аналіз кліматичних факторів і продуктивності агроекосистем. У результаті досліджень встановлено кореляційну залежність урожайності озимої пшениці від окремих кліматичних чинників за 20-річний період (1997–2016 рр.). За визначеними математичними моделями були побудовані графіки функцій, які дають змогу прогнозувати рівень урожайності культури за різного впливу кліматичних факторів. Установлено, що для пшениці озимої найвагомішими метеорологічними факторами є кількість опадів  травня і червня, а також запаси продуктивної вологи в 20 см шарі ґрунту у квітні та травні. In the article the complex analysis of climatic factors and productivity of agro-ecosystems was made by the example of typical Forest-Steppe zones of agricultural enterprises. The studies found the correlation dependence of crop capacity of winter wheat yield of some climatic factors for the 20-year period (1997–2016). By certain mathematical models the graphics features that enable us to predict the level of productivity of various crops by the impact of climate factors were built. It is found that the most significant meteorological factors for winter wheat are rainfalls in May and June, and productive moisture reserves in the soil layer 20 cm in April and May.


2019 ◽  
pp. 20-30
Author(s):  
I. Prymak ◽  
O. Panchenko ◽  
M. Voytovik ◽  
I. Panchenko ◽  
V. Karpenko

The problem statement. For the last two decades in Ukraine a fast decrease in chornozemic soil fertility, especially a decline of its agrochemical properties, has been noticed. One of the way of improvement its fertility is to develop and implement scientifically-based resource-saving and soil-protective system of tillage operations along with rational fertilization of field crops on the tilled soil. The aim of the research – with the help of a field experiment to define a rational system of main tillage and fertilization of typical chornozemic soil under a grain row five course rotation which provides 5,5 t/ha of dry matter from a tilled field under the expanded reproduction of agrochemical indices of soil fertility and appropriate energetic efficiency. Conclusions. Under disc and beardless tillage especially of fertilized areas a differentiation of tilled soil layer according to the agrochemical indices of its fertility is observed. A stabilization of humus and general nitrogen content as well as fertilizer elements in a tilled soil layer occurs under application of 8 t/ha of pus + N76P64K57. The efficiency of humification processes in soil is the lowest under disc tillage and the highest under beard-beardless and beard tillage in a crop rotation. Along with the increase of soil depth of its tilled layer, annual decrease of its general nitrogen supply on the untilled areas under beard and differential tillage falls down. However, under beardless and disc tillage it increases. An inverse relation is observed on the untilled areas. Under beard and beard-beardless tillage almost the same crop rotation productivity was obtained, while under beardless and disc tillage the productivity was significantly lower. For a field grain row five course crop rotation of Right Bank Forest-steppe of Ukraine a deep arable tillage is recommended only in one filed, and in the rest fields beardless and disc tillage with the application of 8 tones of pus per hectare of tilled field + N76P64K57 under a common reproduction and 12 t/ha of pus + N95P82K57 under expanded reproduction of typical chornozemic soil fertility is recommended. Key words: soil, tillage, crop rotation, fertilizers, fertility, rotation.


2020 ◽  
pp. 28-33
Author(s):  
Valery Genadievich Popov ◽  
Andrey Vladimirovich Panfilov ◽  
Yuriy Vyacheslavovich Bondarenko ◽  
Konstantin Mikhailovich Doronin ◽  
Evgeny Nikolaevih Martynov ◽  
...  

The article analyzes the experience of the impact of the system of forest belts and mineral fertilizers on the yield of spring wheat, including on irrigated lands. Vegetation irrigation is designed to maintain the humidity of the active soil layer from germination to maturation at the lower level of the optimum-70-75%, and in the phases of tubulation-earing - flowering - 75-80% NV. However, due to the large differences in zones and microzones of soil and climate conditions and due to the weather conditions of individual years, wheat irrigation regimes require a clear differentiation. In the Volga region in the dry autumn rainfalls give the norm of 800-1000 m3/ha, and in saline soils – 1000-1300 and 3-4 vegetation irrigation at tillering, phases of booting, earing and grain formation the norm 600-650 m3/ha. the impact of the system of forest belts, mineral fertilizers on the yield of spring wheat is closely tied to the formation of microclimate at different distances from forest edges.


Author(s):  
M. Novokhatskyi ◽  
◽  
V. Targonya ◽  
T. Babinets ◽  
O. Gorodetskyi ◽  
...  

Aim. Assessment of the impact of the most common systems of basic tillage and biological methods of optimization of nutrition regimes on the realization of the potential of grain productivity of soybean in the Forest-Steppe of Ukraine. Methods. The research used general scientific (hypothesis, experiment, observation) and special (field experiment, morphological analysis) methods Results. The analysis of the results of field experiments shows that the conservation system of soil cultivation, which provided the formation of 27.6 c/ha of grain, is preferable by the level of biological yield of soybean. The use of other systems caused a decrease in the biological yield level: up to 26.4 c/ha for the use of the traditional system, up to 25.3 c/ha for the use of mulching and up to 23.0 c/ha for the use of the mini-till. With the use of Groundfix, the average biological yield of soybean grain increases to 25.6 c / ha for application rates of 5 l/ha, and to 28.2 c/ha for application rates of 10 l/ha when control variants (without the use of the specified preparation) an average of 22.6 c/ha of grain was formed with fluctuations in soil tillage systems from 21.0 (mini-bodies) to 25.8 c/ha (traditional).The application of Groundfix (10 l/ha) reduced the seed abortion rate from 11.0% (average without biofertilizer variants) to 8.0%, forming the optimal number of stem nodes with beans, increasing the attachment height of the lower beans and improving other indicators of biological productivity soybeans. Conclusions. It has been found that the use of the canning tillage system generates an average of 27.6 cent soybean grains, which is the highest indicator among the main tillage systems within the scheme of our research. The use of Groundfix caused a change in this indicator: if the variants with a conservative system of basic tillage without the use of biological preparation (control) were formed on average 24.1 c/ha, the use of Ground Licks caused the increase of biological productivity up to 29.4 c/ha, and at a dose of 10 l/ha biological yield was 32.2 c/ha. It was found that both the use of Groundfix and the basic tillage system influenced the elements of the yield structure: the density of the plants at the time of harvest depended more on the tillage system than on the use of Groundfix; the use of Groundfix and increasing its dose within the scheme of our studies positively reflected on the density of standing plants; the height of attachment of the lower beans and reduced the abortion of the seeds.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodan Sun ◽  
Gang Wang ◽  
Qingxu Ma ◽  
Jiahui Liao ◽  
Dong Wang ◽  
...  

Abstract Background Soil organic carbon (SOC) is important for soil quality and fertility in forest ecosystems. Labile SOC fractions are sensitive to environmental changes, which reflect the impact of short-term internal and external management measures on the soil carbon pool. Organic mulching (OM) alters the soil environment and promotes plant growth. However, little is known about the responses of SOC fractions in rhizosphere or bulk soil to OM in urban forests and its correlation with carbon composition in plants. Methods A one-year field experiment with four treatments (OM at 0, 5, 10, and 20 cm thicknesses) was conducted in a 15-year-old Ligustrum lucidum plantation. Changes in the SOC fractions in the rhizosphere and bulk soil; the carbon content in the plant fine roots, leaves, and organic mulch; and several soil physicochemical properties were measured. The relationships between SOC fractions and the measured variables were analysed. Results The OM treatments had no significant effect on the SOC fractions, except for the dissolved organic carbon (DOC). OM promoted the movement of SOC to deeper soil because of the increased carbon content in fine roots of subsoil. There were significant correlations between DOC and microbial biomass carbon and SOC and easily oxidised organic carbon. The OM had a greater effect on organic carbon fractions in the bulk soil than in the rhizosphere. The thinnest (5 cm) mulching layers showed the most rapid carbon decomposition over time. The time after OM had the greatest effect on the SOC fractions, followed by soil layer. Conclusions The frequent addition of small amounts of organic mulch increased SOC accumulation in the present study. OM is a potential management model to enhance soil organic matter storage for maintaining urban forest productivity.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


2021 ◽  
Vol 13 (10) ◽  
pp. 5355
Author(s):  
Vilém Pechanec ◽  
Ondřej Cudlín ◽  
Miloš Zapletal ◽  
Jan Purkyt ◽  
Lenka Štěrbová ◽  
...  

Global and regional biodiversity loss is caused by several drivers including urban development, land use intensification, overexploitation of natural resources, environmental pollution, and climate change. The main aim of our study was to adapt the GLOBIO3 model to the conditions of the Czech Republic (CR) to assess loss of naturalness and biodiversity vulnerability at the habitat level on a detailed scale across the entire CR. An additional aim was to assess the main drivers affecting the biodiversity of habitat types. The GLOBIO3 model was adapted to CZ-GLOBIO by adapting global to local scales and using habitat quality and naturalness data instead of species occurrence data. The total mean species abundance (MSA) index of habitat quality, calculated from the spatial overlay of the four MSA indicators by our new equation, reached the value 0.62. The total value of MSA for natural and near-natural habitats was found to be affected mainly by infrastructure development and fragmentation. Simultaneously, intensity of land use change and atmospheric nitrogen deposition contributed primarily to the low total value of MSA for distant natural habitats. The CZ-GLOBIO model can be an important tool in political decision making to reduce the impact of the main drivers on habitat biodiversity in the CR.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 500
Author(s):  
Zong Zhao ◽  
Yong Liu ◽  
Hongyan Jia ◽  
Wensheng Sun ◽  
Angang Ming ◽  
...  

Objective: To investigate the impact of different slope directions on the quantity and quality of the soil seed bank and seedling germination process of Castanopsis hystrix plantations. Method: Fixed sample plots in forest stands of Castanopsis hystrix were established on different slope directions (sunny slope, semi-sunny slope, semi-shady slope, and shady slope). The characteristics of the forest stand were investigated, and per-wood scaling was carried out. The temporal dynamics of the seed rain and seed bank were quantified using seed rain collectors and by collecting soil samples from different depths. The quantity and quality of the seeds were determined, and the vigor of mature seeds was measured throughout the study. Results: (1) The diffusion of Castanopsis hystrix seed rain started in mid-September, reached its peak from late October to early November, and ended in mid-December. (2) The dissemination process, occurrence time, and composition of the seed rain varied between the different slope directions. The seed rain intensity on the semi-sunny slope was the highest (572.75 ± 9.50 grains∙m−2), followed by the sunny slope (515.60 ± 10.28 grains∙m−2), the semi-shady slope (382.13 ± 12.11 grains∙m−2), and finally the shady slope (208.00 ± 11.35 grains∙m−2). The seed rain on the sunny slope diffused earliest and lasted the longest, while the seed rain on the shady slope diffused latest and lasted the shortest time. Seed vigor and the proportion of mature seeds within the seed rain were greatest on the semi-sunny slope, followed by the sunny slope, semi-shady slope, and the shady slope. (3) From the end of the seed rain to August of the following year, the amount of total reserves of the soil seed banks was highest on the semi-sunny slope, followed by the sunny slope then the semi-shady slope, and it was the lowest on the shady slope. The amount of mature, immature, gnawed seeds and seed vigor of the soil seed bank in various slope directions showed a decreasing trend with time. The seeds of the seed bank in all slope directions were mainly distributed in the litter layer, followed by the 0–2 cm humus layer, and only a few seeds were present in the 2–5 cm soil layer. (4) The seedling density of Castanopsis hystrix differed significantly on the different slope directions. The semi-sunny slope had the most seedlings, followed by the sunny slope, semi-shady slope, and the shady slope. Conclusions: The environmental conditions of the semi-sunny slope were found to be most suitable for the seed germination and seedling growth of Castanopsis hystrix, and more conducive to the regeneration and restoration of its population.


2017 ◽  
Vol 18 (7) ◽  
pp. 2029-2042
Author(s):  
Tony E. Wong ◽  
William Kleiber ◽  
David C. Noone

Abstract Land surface models are notorious for containing many parameters that control the exchange of heat and moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET) between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapotranspiration and its partitioning using statistical approaches that calibrate land surface model parameters by assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and thus the evapotranspiration flux partitioning. Using an adaptive Metropolis–Hastings algorithm to construct a Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the accounting of various sources of uncertainty in the field observations and model output and that it is critical to account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in these parameters, which is essential for model improvement and development. The key points of this paper are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes; 2) ET partitioning estimates hinge on the representation of uncertainties in the model and data; and 3) despite these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.


2021 ◽  
Vol 39 ◽  
pp. 01006
Author(s):  
Elena Kovalyova ◽  
Ekaterina Kotlyarova ◽  
Olga Kuzmina ◽  
Yuri Breslavets ◽  
Alexey Teteryadchenko

The article presents the results of a field study of the thickness of the humus profiles of gray forest soils and podzolized chernozems of dif-ferent terms of agricultural use of soil catens of broad-leaved-forest (background) and meadow-steppe areas of the Belgorod region. The work was carried out in the spring and summer period 2018-2019. The objects of the study were different-aged arable plots with the age of agricultural development of 100 and 160 years, respectively. The steepness of the surface on the plots did not exceed 5-60. It is established that the thickness of humus profile under the influence of agricultural cultivation during 60 years has decreased by 49 cm, at that on the slopes of northern exposition this index is more expressed (33 cm) than on the slopes of southern exposition (16 cm). It is possible, to note, that with increase of age of agricultural use on slopes of northern and southern expositions the greatest thickness of humus horizon is observed on anomalous soils (72 and 65 sm accordingly). Within the background catens the soil cover is homogeneous, the second humus horizon was observed in each of the studied transects.


Sign in / Sign up

Export Citation Format

Share Document