scholarly journals Influence of flow conditions on the distribution of thermal stresses in the waterwall tubes connected by fins

2021 ◽  
Vol 323 ◽  
pp. 00025
Author(s):  
Marek Majdak

In this study are presented results of numerical analysis of the thermal conditions of smooth waterwall tubes connected by fins and heated with equal heat flux. Inside tubes flows the water at supercritical parameters. The thermodynamic parameters at the inlet to each tube are similar but the mass flow of the fluid differs in each tube. Numerical model used for analysis allows to determine the temperature distribution, in online mode, in every control element of the analysed tubes and in the finite elements of the working fluid depending on the current thermodynamic parameters of the fluid and tubes. After calculation of the temperature distribution field, it can be used to determine the thermal stresses distribution in tubes and fins and determine the parts of elements, where the maximum values of the thermal stresses occur. The presented analysis was carried out for comparison of the thermal stresses distribution in small fragment of the combustion chamber wall in case of changing the fluid mass flows in neighbouring waterwall tubes.

Author(s):  
Mohd Afzanizam Mohd Rosli ◽  
Irfan Alias Farhan Latif ◽  
Muhammad Zaid Nawam ◽  
Mohd Noor Asril Saadun ◽  
Hasila Jarimi ◽  
...  

The temperature distribution across the photovoltaic (PV) module in most cases is not uniform, leading to regions of hotspots. The cells in these regions perform less efficiently, leading to an overall lower PV module efficiency. They can also be permanently damaged due to high thermal stresses. To enable the high-efficiency operation and a longer lifetime of the PV module, the temperatures must not fluctuate wildly across the PV module. In this study, a custom absorber is designed based on literature to provide a more even temperature distribution across the PV module. This design is two standard sets of spiral absorbers connected. This design is relatively less complicated for this reason and it allows room for adjusting the pipe spacing without much complication. The absorber design is tested via computational fluid dynamics (CFD) simulation using ANSYS Fluent 19.2, and the simulation model is validated by an experimental study with the highest percentage error of 9.44%. The custom and the serpentine absorber utilized in the experiment are simulated under the same operating conditions having water as the working fluid. The custom absorber design is found to have a more uniform temperature distribution on more areas of the PV module as compared to the absorber design utilized in the experiment, which leads to a lower average surface temperature of the PV module. This results in an increase in thermal and electrical efficiency of the PV module by 3.21% and 0.65%, respectively.


2019 ◽  
Vol 128 ◽  
pp. 01024 ◽  
Author(s):  
Marek Majdak

The article presents the results of thermal and flow analysis of the working conditions of neighbouring waterwall tubes, loaded with heat streams of different values. The numerical model used for the analysis, allowing to calculate the temperature distribution of the tubes and the fluid flowing throughthem at each time step depending on the thermophysical parameters of the fluid and the material from which the tubes were made. By using the algorithm it is possible to precisely determine the temperaturedistribution for tubes, allowing to determine the places where the most divergent temperatures occur and in which thermal stresses of the highest value may occur. Analysis for several adjacent tubes willallow for the effect of temperature differences in the tubes to the temperature of the fin which is connecting them and to collect data that may be used for the determination of stress distribution in the tubes and fins.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2585
Author(s):  
Jessica Guadalupe Tobal-Cupul ◽  
Estela Cerezo-Acevedo ◽  
Yair Yosias Arriola-Gil ◽  
Hector Fernando Gomez-Garcia ◽  
Victor Manuel Romero-Medina

The Mexican Caribbean Sea has potential zones for Ocean Thermal Energy Conversion (OTEC) implementation. Universidad del Caribe and Instituto de Ciencias del Mar y Limnologia, with the support of the Mexican Centre of Innovation in Ocean Energy, designed and constructed a prototype OTEC plant (OTEC-CC-MX-1 kWe), which is the first initiative in Mexico for exploitation of this type of renewable energy. This paper presents a sensitivity analysis whose objective was to know, before carrying out the experimental tests, the behavior of OTEC-CC-MX-1 kWe regarding temperature differences, as well as the non-possible operating conditions, which allows us to assess possible modifications in the prototype installation. An algorithm was developed to obtain the inlet and outlet temperatures of the water and working fluid in the heat exchangers using the monthly surface and deep-water temperature data from the Hybrid Coordinate Ocean Model and Geographically Weighted Regression Temperature Model for the Mexican Caribbean Sea. With these temperatures, the following were analyzed: fluctuation of thermal efficiency, mass flows of R-152a and water and power production. By analyzing the results, we verified maximum and minimum mass flows of water and R-152a to produce 1 kWe during a typical year in the Mexican Caribbean Sea and the conditions when the production of electricity is not possible for OTEC-CC-MX-1 kWe.


2014 ◽  
Vol 18 (4) ◽  
pp. 1413-1423 ◽  
Author(s):  
Dragan Ruzic ◽  
Sinisa Bikic

The aim of the research described in this paper, is to make a virtual thermal manikin that would be simple, but also robust and reliable. The virtual thermal manikin was made in order to investigate thermal conditions inside vehicle cabins. The main parameters of the presented numerical model that were investigated in this paper are mesh characteristics and turbulence models. Heat fluxes on the manikin's body segments obtained from the simulations were compared with published results, from three different experiments done on physical thermal manikins. The presented virtual thermal manikin, meshed with surface elements of 0.035 m in nominal size (around 13,600 surface elements) and in conjunction with the two-layer RANS Realizable k-? turbulence model, had generally good agreement with experimental data in both forced and natural flow conditions.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


Author(s):  
Melike Nikbay ◽  
M. Berkay Acikgoz ◽  
Husnu Kerpicci

Uniformity of temperature distribution in a loaded freezer cabinet is one of the most important factors affecting energy consumption of a refrigerator. Present study focuses on the airflow behavior and the temperature distribution inside the freezer compartment of a domestic no-frost refrigerator. Energy consumption increases in a freezer cabinet if the temperature difference between the warmest load package and average of all packages is high. The objective is to reduce the energy consumption by providing a uniform temperature distribution and also to keep the food fresh for a longer time. In this study, the air flow and heat transfer during on-time and off-time periods inside the freezer compartment is modeled by considering turbulent and laminar flow conditions in 3D transient CFD analyses. The initial and boundary conditions are provided from temperature controlled room and PIV measurements. The CFD analyses obtained are verified by experimental measurements.


2014 ◽  
Vol 223 ◽  
pp. 238-245
Author(s):  
Tomasz Samborski ◽  
Andrzej Zbrowski

The article discusses the use of thermography in verification tests of a prototype calorimeter chamber constituting a part of a test stand for actuators used in smoke and ventilation systems. Based on the prototype control methodology developed at the ITeE – PIB, the authors identified areas posing a potential threat to the proper functioning of the system. The measurements of the temperature distribution on the outer surface of the chamber in the identified areas (trouble spots) are shown. The measurements were taken in thermal conditions related to tests conducted in compliance with the procedures of normative environmental investigations. The article also discusses the scope of activities that need to be taken in order to eliminate the adverse effects of heat transfer (thermal bridges, welds, etc.). Based on the thermographic tests, the authors proposed some guidelines to be included in the knowledge base used in the design of similar systems.


Sign in / Sign up

Export Citation Format

Share Document