scholarly journals A review of microwave devices based on CVD-grown graphene with experimental demonstration

2019 ◽  
Vol 6 ◽  
pp. 8 ◽  
Author(s):  
Wei-Bing Lu ◽  
Hui Chen ◽  
Zhen-Guo Liu

As a two-dimension planar material with zero-gap structure, graphene has a lot of outstanding properties in microwave frequency band, and the chemical vapor deposition (CVD) method can produce the large-scale graphene sheets with high quality for applications. Thus, the study about the microwave devices based on CVD-grown graphene has been aroused wide interests in the past few years. In this paper, mainly concentrating on the research by Chinese scientific groups, we review the development of microwave devices based on the CVD-grown graphene which are all validated by experiments, including attenuators, absorbers, antennas, electromagnetic interference (EMI) shielding and beam reconfiguration.

2020 ◽  
Vol 709 ◽  
pp. 138225
Author(s):  
Derya Ataç ◽  
Johnny G.M. Sanderink ◽  
Sachin Kinge ◽  
Dirk J. Gravesteijn ◽  
Alexey Y. Kovalgin ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (35) ◽  
pp. 20438-20444
Author(s):  
Ning Li ◽  
Yawen Yuan ◽  
Jinglei Liu ◽  
Shifeng Hou

In this work, chemical vapor deposition (CVD) method-grown graphene on plasma-etched quartz glass supported platinum nanoparticles (PtNPs/eQG) was constructed as an independent transparent electrode for non-enzymatic hydrogen peroxide (H2O2) detection.


2016 ◽  
Vol 15 (05n06) ◽  
pp. 1660016
Author(s):  
Mayukh Chakravarty ◽  
Rishi Sharma ◽  
Kumar Amit ◽  
Neelima Sharma ◽  
S. K. Pradhan

Graphene based nanomaterials have attracted tremendous attention for their potential applications in various fields. In the present investigation, the growth of graphene on silicon substrate using thermal chemical vapor deposition (Thermal-CVD) method has been reported and the biocompatibility of obtained yield has been critically assessed. Raman spectra confirm the formation of graphene which was found to be the best to obtain minimal number of layers of graphene. Three prominent peaks have been observed at approximately 1360[Formula: see text]cm[Formula: see text] (D Peak), 1595[Formula: see text]cm[Formula: see text] (G Peak) and 2700[Formula: see text]cm[Formula: see text] (2D Peak). Haemolysis test and simulated body fluid (SBF) test are performed to check the biocompatibility of the synthesized graphene samples. Atomic force micrographs of the samples are taken prior and after soaking them in SBF solution to study their interaction with the fluid. Haemolysis percentage is determined using UV-Vis to determine the hemocompatible nature of the samples. The results of haemolysis and SBF test demonstrated that Thermal-CVD grown graphene samples are biocompatible.


Author(s):  
Ben Wang ◽  
Richard Liang ◽  
Olivier Marietta-Tondin ◽  
Sheng Wang ◽  
Chuck Zhang ◽  
...  

Carbon nanotubes are known for their exceptional mechanical, electrical and thermal properties. Nanotubes’ electrical properties will play a vital role in many critical applications, with EMI shielding as one of the more important applications. In this study, the authors examined the effectiveness of SWNT BuckyPaper films’ electromagnetic interference (EMI) shielding. Individual BuckyPaper films used in the research were only 15∼25μm thick with an area density of 0.0705 oz./ft2 or 21.5g/m2. Highly conductive SWNT BuckyPapers films were incorporated into foam sandwich structures. EMI tests revealed that the foam structures with a surface skin of two layers of randomly oriented BuckyPaper films achieved attenuation as great as 26 dB at 455–500 MHz or an average of 21 dB across the entire frequency range, compared to the pure foam control panel. At frequency ranges of 4GHz-18GHz, the foam sandwich samples with three layers SWNT BuckyPapers showed an EMI attenuation as high as 30dB across the entire frequency range. The results show that SWNT BuckyPaper materials offer a very promising lightweight technical solution for EMI shielding application. BuckyPapers can also easily be incorporated into conventional composite structures, which is critical for potential large scale application of SWNTs for multifunctional composites and structures.


RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19846-19851 ◽  
Author(s):  
Dongyun Sun ◽  
Wei Wang ◽  
Zhaoping Liu

Graphene films grown by the chemical vapor deposition (CVD) method have attracted intensive attention due to their native advantages of both high quality and large quantity for commercial applications.


MRS Advances ◽  
2016 ◽  
Vol 1 (55) ◽  
pp. 3667-3672 ◽  
Author(s):  
D. Convertino ◽  
A. Rossi ◽  
V. Miseikis ◽  
V. Piazza ◽  
C. Coletti

ABSTRACTThis work presents a comparison of the structural, chemical and electronic properties of multi-layer graphene grown on SiC(000-1) by using two different growth approaches: thermal decomposition and chemical vapor deposition (CVD). The topography of the samples was investigated by using atomic force microscopy (AFM), and scanning electron microscopy (SEM) was performed to examine the sample on a large scale. Raman spectroscopy was used to assess the crystallinity and electronic behavior of the multi-layer graphene and to estimate its thickness in a non-invasive way. While the crystallinity of the samples obtained with the two different approaches is comparable, our results indicate that the CVD method allows for a better thickness control of the grown graphene.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1839
Author(s):  
Tuqeer Nasir ◽  
Bum Jun Kim ◽  
Muhammad Hassnain ◽  
Sang Hoon Lee ◽  
Byung Joo Jeong ◽  
...  

Chemical vapor deposition of graphene on transition metals is the most favored method to get large scale homogenous graphene films to date. However, this method involves a very critical step of transferring as grown graphene to desired substrates. A sacrificial polymer film is used to provide mechanical and structural support to graphene, as it is detached from underlying metal substrate, but, the residue and cracks of the polymer film after the transfer process affects the properties of the graphene. Herein, a simple mixture of polystyrene and low weight plasticizing molecules is reported as a suitable candidate to be used as polymer support layer for transfer of graphene synthesized by chemical vapor deposition (CVD). This combination primarily improves the flexibility of the polystyrene to prevent cracking during the transfer process. In addition, the polymer removal solvent can easily penetrate between the softener molecules, so that the polymer film can be easily dissolved after transfer of graphene, thereby leaving no residue. This facile method can be used freely for the large-scale transfer of 2D materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 768
Author(s):  
Dongyi Ao ◽  
Yongliang Tang ◽  
Xiaofeng Xu ◽  
Xia Xiang ◽  
Jingxia Yu ◽  
...  

A highly conductive three-dimensional (3D) graphene network (GN) was fabricated by chemical vapor deposition on a 3D nickel fiber network and subsequent etching process. Then a lightweight and flexible polydimethylsiloxane (PDMS)/GN composite was prepared by a vacuum infiltration method by using the graphene network as a template. The composite showed the superior electrical conductivity of 6100 S/m even at a very low loading level of graphene (1.2 wt %). As a result, an outstanding electromagnetic interference (EMI) shielding effectiveness (SE) of around 40 and 90 dB can be achieved in the X-band at thicknesses of 0.25 and 0.75 mm, respectively, which are much higher than most of the conductive polymers filled with carbon. The 3D graphene network can also act as a mechanical enhancer for PDMS. With a loading level of 1.2 wt %, the composite shows a significant increase by 256% in tensile strength.


NANO ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. 1750140 ◽  
Author(s):  
Wungyeon Kim ◽  
Hyunjeong Kim ◽  
Gyu Tae Kim

Growing graphene on a large scale is the first step towards its industrial application. The most widely used large-scale graphene growth method is chemical vapor deposition (CVD) on metal foil. Transferring large-scale graphene without damaging it or degrading its performance is also very important. Generally, techniques for transferring CVD-grown graphene involve metal-foil etching. In this case, the metal etchant can chemically alter the graphene and small amounts of metal residue still remain after etching. These metal residues change the properties of the transferred graphene. In this paper, we demonstrate a new technique for transferring CVD-grown graphene films onto arbitrary substrates using Crystalbond, an off-the-shelf adhesive material. This new method is very simple, easy, and fast. It also solves the aforementioned problems associated with metal etching, by using mechanical exfoliation of graphene via the high adhesive strength of Crystalbond. We transferred a [Formula: see text]1[Formula: see text]cm size piece of graphene, which exhibited reasonable optical and electrical properties, as observed using Raman spectroscopy and field effect transistor (FET) measurements, respectively.


2020 ◽  
Author(s):  
Lungwani Muungo

The purpose of this review is to evaluate progress inmolecular epidemiology over the past 24 years in canceretiology and prevention to draw lessons for futureresearch incorporating the new generation of biomarkers.Molecular epidemiology was introduced inthe study of cancer in the early 1980s, with theexpectation that it would help overcome some majorlimitations of epidemiology and facilitate cancerprevention. The expectation was that biomarkerswould improve exposure assessment, document earlychanges preceding disease, and identify subgroupsin the population with greater susceptibility to cancer,thereby increasing the ability of epidemiologic studiesto identify causes and elucidate mechanisms incarcinogenesis. The first generation of biomarkers hasindeed contributed to our understanding of riskandsusceptibility related largely to genotoxic carcinogens.Consequently, interventions and policy changes havebeen mounted to reduce riskfrom several importantenvironmental carcinogens. Several new and promisingbiomarkers are now becoming available for epidemiologicstudies, thanks to the development of highthroughputtechnologies and theoretical advances inbiology. These include toxicogenomics, alterations ingene methylation and gene expression, proteomics, andmetabonomics, which allow large-scale studies, includingdiscovery-oriented as well as hypothesis-testinginvestigations. However, most of these newer biomarkershave not been adequately validated, and theirrole in the causal paradigm is not clear. There is a needfor their systematic validation using principles andcriteria established over the past several decades inmolecular cancer epidemiology.


Sign in / Sign up

Export Citation Format

Share Document