scholarly journals Development of the Effective Reaction Model for Diamond Deposition Simulation within the Continuous Media Approach

2019 ◽  
Vol 224 ◽  
pp. 02004
Author(s):  
Dmitry V. Leshchev ◽  
Yuriy E. Gorbachev

Three models for diamond growth process by the chemical vapor deposition of methane are proposed. They differ in the degree of detail of the surface reaction description. The most complete model contains the reactions of deposition, etching and insertion. Gas-dynamic simulations have been performed for all those models. The species delivery to the substrate and the contribution from different species to the growth process is analysed. It is shown that different surface reaction models lead to different profiles of the species concentrations in the immediate vicinity of the substrate, thus, the experimental data on the growth rate may give information on the growth mechanism.

2014 ◽  
Vol 778-780 ◽  
pp. 218-221 ◽  
Author(s):  
Örjan Danielsson ◽  
Olof Kordina ◽  
Erik Janzén

Simulations of SiC chemical vapor deposition is an excellent tool for understanding, improving and optimizing this complex process. However, models used up to date have often been validated for one particular set of process parameters, often in the silicon limited growth regime, in one particular growth equipment. With chlorinated precursors optimal growth condition is often found to take place at the border between carbon limited and silicon limited regimes. At those conditions the previous models fail to predict deposition rates properly. In this study we argue that molecules like C2H2, C2H4and CH4, actually might react with the surface with much higher rates than suggested before. Comparisons are made between the previous model and our new model, as well as experiments. It is shown that higher reactivities of the hydrocarbon molecules will improve simulation results as compared to experimental findings, and help to better explain some of the trends for varying C/Si ratios.


1998 ◽  
Vol 507 ◽  
Author(s):  
Katsuya Abe ◽  
Tatsuro Watahiki ◽  
Akira Yamada ◽  
Makoto Konagai

ABSTRACTThe growth mechanism of Si film at low temperature on Si(100) by photo-CVD was theoretically analyzed by using reaction models both in the gas phase and on the growing surface. We introduced three surface reactions; the growth of Si from SiH3 radicals, the dangling bond termination by atomic hydrogen and the abstraction of bonding hydrogen by SiH3 radicals. We assumed that the film structure is determined by the hydrogen surface coverage ratio “ø” and the parameters of the surface reaction model were determined from the experimental results. The theoretical analysis explained well the experimental data on the growth rate.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


1997 ◽  
Vol 36 (Part 2, No. 10B) ◽  
pp. L1406-L1409 ◽  
Author(s):  
Gou-Tsau Liang ◽  
Franklin Chau-Nan Hong

2007 ◽  
Vol 556-557 ◽  
pp. 61-64
Author(s):  
Y. Shishkin ◽  
Rachael L. Myers-Ward ◽  
Stephen E. Saddow ◽  
Alexander Galyukov ◽  
A.N. Vorob'ev ◽  
...  

A fully-comprehensive three-dimensional simulation of a CVD epitaxial growth process has been undertaken and is reported here. Based on a previously developed simulation platform, which connects fluid dynamics and thermal temperature profiling with chemical species kinetics, a complete model of the reaction process in a low pressure hot-wall CVD reactor has been developed. Close agreement between the growth rate observed experimentally and simulated theoretically has been achieved. Such an approach should provide the researcher with sufficient insight into the expected growth rate in the reactor as well as any variations in growth across the hot zone.


2016 ◽  
Vol 869 ◽  
pp. 721-726 ◽  
Author(s):  
Divani C. Barbosa ◽  
Ursula Andréia Mengui ◽  
Mauricio R. Baldan ◽  
Vladimir J. Trava-Airoldi ◽  
Evaldo José Corat

The effect of argon content upon the growth rate and the properties of diamond thin films grown with different grains sizes are explored. An argon-free and argon-rich gas mixture of methane and hydrogen is used in a hot filament chemical vapor deposition reactor. Characterization of the films is accomplished by scanning electron microscopy, Raman spectroscopy and high-resolution x-ray diffraction. An extensive comparison of the growth rate values and films morphologies obtained in this study with those found in the literature suggests that there are distinct common trends for microcrystalline and nanocrystalline diamond growth, despite a large variation in the gas mixture composition. Included is a discussion of the possible reasons for these observations.


2012 ◽  
Vol 717-720 ◽  
pp. 105-108 ◽  
Author(s):  
Wan Shun Zhao ◽  
Guo Sheng Sun ◽  
Hai Lei Wu ◽  
Guo Guo Yan ◽  
Liu Zheng ◽  
...  

A vertical 3×2〞low pressure chemical vapor deposition (LPCVD) system has been developed to realize fast epitaxial growth of 4H-SiC. The epitaxial growth process was optimized and it was found that the growth rate increases with increasing C/Si ratio and tends to saturate when C/Si ratio exceeded 1. Mirror-like thick 4H-SiC homoepitaxial layers are obtained at 1500 °C and C/Si ratio of 0.5 with a growth rate of 25 μm/h. The minimum RMS roughness is 0.20 nm and the FWHM of rocking curves of epilayers grown for 1 hour and 2 hours are 26.2 arcsec and 32.4 arcsec, respectively. These results indicate that high-quality thick 4H-SiC epilayers can be grown successfully on the off-orientation 4H-SiC substrates.


Sign in / Sign up

Export Citation Format

Share Document