scholarly journals Parallel Numerical Simulation of the Magnetic Moment Reversal within the φ0-Josephson Junction Spintronic Model

2020 ◽  
Vol 226 ◽  
pp. 02018
Author(s):  
Stefani Panayotova ◽  
Maxim Bashashin ◽  
Elena Zemlyanaya ◽  
Pavlina Atanasova ◽  
Yury Shukrinov ◽  
...  

The φ0-Josephson Dushanbe, Tajikistanjunction model with a coupling between the magnetic moment and the Josephson current in the “superconductor–ferromagnet–superconductor” system has been investigated. Numerical solution of the respective system of nonlinear differential equations is based on the two-stage Gauss–Legendre algorithm. For numerical simulation in a wide range of parameters which requires a significant computer time, a parallel MPI=C++ computer code has been developed. Results of numerical study of the magnetization effect depending on physical parameters, as well as results of methodological calculations demonstrating the efficiency of the parallel implementation, are presented. Calculations have been carried out at the Heterogeneous Platform “HybriLIT” and on the supercomputer “Govorun” of the Multifunctional Information and Computing Complex of the Laboratory of Information Technologies, JINR (Dubna).

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2019 ◽  
Vol 392 ◽  
pp. 123-137 ◽  
Author(s):  
Mohamed A. Medebber ◽  
Abderrahmane Aissa ◽  
Mohamed El Amine Slimani ◽  
Noureddine Retiel

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, THand TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.


Author(s):  
А.В. Волохова ◽  
Е.В. Земляная ◽  
В.С. Рихвицкий

Разработанный ранее метод численного моделирования процесса формирования поляронных состояний в конденсированных средах модифицирован с применением алгоритма разбиений, что обеспечивает существенное ускорение вычислений при расчетах в параллельном режиме на многопроцессорных системах. Программная реализация выполнена на основе технологии параллельного программирования MPI. Проведенные методические расчеты на Центральном информационно-вычислительном комплексе лаборатории информационных технологий Объединенного института ядерных исследований (Дубна) с различным количеством задействованных процессоров при выборе разных параметров вычислительной схемы подтверждают эффективность разработанного подхода для численного решения системы нелинейных дифференциальных уравнений в частных производных, описывающих динамическую модель полярона. The previously developed method for the numerical simulation of the formation of polaron states in condensed media is modified using the partitioning algorithm, which provides a significant speedup in the parallel computations on multiprocessor systems. The software implementation is based on the MPI technology. Numerical results obtained on the multiprocessor cluster installed at the Laboratory of Information Technologies (Joint Institute for Nuclear Research, Dubna) with various numbers of processors and with various computational parameters show that the proposed approach is efficient for the numerical solution of the system of nonlinear differential equations describing the polaron dynamical model.


2007 ◽  
Vol 12 (4) ◽  
pp. 541-552 ◽  
Author(s):  
M. Sankar ◽  
M. Venkatachalappa

A numerical study is conducted to understand the effect of surface tension on buoyancy driven convection in a vertical cylindrical annular cavity filled with a low Prandtl number fluid. The inner and outer cylinders are maintained at different uniform temperatures and the horizontal top and bottom walls are thermally insulated. The upper free surface is assumed to remain flat and non-deformable. A finite difference scheme consisting of the Alternating Direction Implicit method and the Successive Line Over Relaxation method is used to solve the vorticity stream function formulation of the problem. Detailed numerical results of heat transfer rate, temperature and velocity fields have been presented for a wide range of physical parameters of the problem. The flow pattern and temperature distribution in the annular cavity are presented by means of contour plots of streamlines and isotherms. The rate of heat transfer is estimated by evaluating the average Nusselt number. Further, the present numerical results are compared with the existing results and are found to be in good agreement.


Author(s):  
Yulia V. Paukova ◽  
◽  
Konstantin V. Popov ◽  

The present article considers the need to predict migration flows using Predictive Analytics. The Russian Federation is a center of migration activity. The modern world is changing rapidly. An effective migration policy requires effective monitoring of migration flows, assessing the current situation in our and other countries and forecasting migration processes. There are information systems in Russia that contain a wide range of information about foreign citizens and stateless persons that provide the requested information about specific foreign citizens, including grouping it on various grounds. However, it is not possible to analyze and predict it automatically using thousands of parameters. Special attention in Russia is paid to digitalization. Using information technologies (artificial intelligence, machine learning and big data analysis) to forecast migration flows in conditions of variability of future events will allow to take into account a number of events and most accurately predict the quantitative and so-called "qualitative" structure of arrivals. The received information will help to develop state policy and to take appropriate measures in the field of migration regulation. The authors come to the conclusion that it is necessary to amend existing legal acts in order to implement information technologies of Predictive Analytics into the practice of migration authorities.


Author(s):  
S. A. Sadovnikov

Introduction: Successful monitoring of environmental parameters requires the development of flexible software complexes with evolvable calculation functionality. Purpose: Developing a modular system for numerical simulation of atmospheric laser gas analysis. Results: Based on differential absorption method, a software system has been developed which provides the calculation of molecular absorption cross-sections, molecular absorption coefficients, atmospheric transmission spectra, and lidar signals. Absorption line contours are calculated using the Voigt profile. The prior information sources are HITRAN spectroscopic databases and statistical models of the distribution of temperature, pressure and gas components in the atmosphere. For modeling lidar signals, software blocks of calculating the molecular scattering coefficient and aerosol absorption/scattering coefficients were developed. For testing the applicability of various laser sources in the problems of environmental monitoring of the atmosphere, a concentration reconstruction error calculation block was developed for the atmospheric gas components, ignoring the interfering absorption of laser radiation by foreign gases. To verify the correct functioning of the software, a program block was developed for comparing the results of the modeling of atmospheric absorption and transmission spectra by using the standard SPECTRA information system. The discrepancy between the calculation of the atmospheric transmission spectra obtained using the developed system as compared to the SPECTRA results is less than 1%. Thus, a set of the presented program blocks allows you to carry out complex modeling of remote atmospheric gas analysis. Practical relevance: The software complex allows you to rapidly assess the possibilities of using a wide range of laser radiation sources for the problems of remote gas analysis.


2018 ◽  
Vol 13 (4) ◽  
pp. 79-91 ◽  
Author(s):  
E.Sh. Nasibullaeva

The paper presents a generalized mathematical model and numerical investigation of the problem of acoustic scattering from a single sound-permeable sphere during the passage of two types of waves - spherical from a monopole radiation source and a plane one. In solving the Helmholtz equation, a numerical technique based on the fast method of multipoles is used, which allows achieving high accuracy of the results obtained at the lowest cost of computer time. The calculations are compared with known experimental data and a good agreement is obtained. The formulas for calculating the main characteristic of the scattering field (the total scattering cross section) for a sound-permeable sphere are generalized. The effect on this characteristic of the physical parameters of media outside and inside the sphere, such as the density and speed of sound, is shown. A numerical parametric analysis of the pressure distribution around a single sound-permeable sphere for different values of the wave radius, density, and speed of sound of the outer and inner medium of the sphere is carried out. The obtained results will later be used for test verification calculations for the numerical solution of the generalized problem of acoustic scattering of a set of sound-permeable spheres (coaxial or arbitrarily located in space).


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1022
Author(s):  
Rashid G. Bikbaev ◽  
Ivan V. Timofeev ◽  
Vasiliy F. Shabanov

Optical sensing is one of many promising applications for all-dielectric photonic materials. Herein, we present an analytical and numerical study on the strain-responsive spectral properties of a bioinspired sensor. The sensor structure contains a two-dimensional periodic array of dielectric nanodisks to mimic the optical behavior of grana lamellae inside chloroplasts. To accumulate a noticeable response, we exploit the collective optical mode in grana ensemble. In higher plants, such a mode appears as Wood’s anomaly near the chlorophyll absorption line to control the photosynthesis rate. The resonance is shown persistent against moderate biological disorder and deformation. Under the stretching or compression of a symmetric structure, the mode splits into a couple of polarized modes. The frequency difference is accurately detected. It depends on the stretch coefficient almost linearly providing easy calibration of the strain-sensing device. The sensitivity of the considered structure remains at 5 nm/% in a wide range of strain. The influence of the stretching coefficient on the length of the reciprocal lattice vectors, as well as on the angle between them, is taken into account. This adaptive phenomenon is suggested for sensing applications in biomimetic optical nanomaterials.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Sign in / Sign up

Export Citation Format

Share Document