scholarly journals Proposed concrete compaction method using an electrical internal vibrator: a review of compaction standard for concrete in laboratory according to SNI 2493:2011

2018 ◽  
Vol 195 ◽  
pp. 01003
Author(s):  
Agus Maryoto

SNI 2493:2011 is the Indonesian National Standard containing the procedures for the manufacture and maintenance of concrete specimens in the laboratory. This standard regulates the way that compaction of compressive specimens is performed using internal vibrators in addition to manual compaction. Unfortunately, the amount and duration of vibrator compaction using an internal vibrator are not specified in the standard. This study examines the effect of vibrator duration when using an internal vibrator to compact concrete compressive strength specimens. The specimens used are of cylinders with diameter 15 cm and height 30 cm. 30 specimens were formed by each of the three concrete compaction methods used. The first type is where concrete is compacted manually by a tamping rod, 25 times each layer. The tamping rod is of 16 mm diameter and 62 cm height. The second type is compaction is by using internal vibrator, with 3 compactions per layer, each for 2 seconds. The third type also uses the internal vibrator, except the duration of each compaction is for 5 seconds. The results of compressive strength tests show that the compressive strength of the concrete compacted with the internal vibrator is about 10% higher than when manually compacting the concrete using a tamping rod. This proposed compaction of concrete by using an internal vibrator can be used as an alternative to manual compaction in the manufacture of concrete compressive strength specimens.

2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


2015 ◽  
Vol 802 ◽  
pp. 142-148
Author(s):  
M.N. Noor Azline ◽  
Farah Nora Aznieta Abd Aziz ◽  
Arafa Suleiman Juma

The article reports a laboratory experimental programme that investigated effect of ground granulated blast furnace (GGBS) on compressive strength of POFA ternary concrete. Compressive strength tests were performed at a range of cements combinations, including 100%PC, two POFA levels for binary concrete, 35% and 45%, and 15%GGBS inclusion for POFA ternary concrete. The compressive strength results were examined in comparison to PC only and equivalent POFA binary concretes for up to 28 days. Results show that the reduction in compressive strength is greater with the higher cement replacement level for all concretes particularly for POFA binary concretes. However, 15%GGBS in POFA blended concrete has a comparable compressive strength compared to PC concrete at both, 35% and 45%, cement replacement levels except for ternary concrete at 0.65 w/c. In addition, the compressive strength of ternary concrete is slightly higher compared to binary concrete for all concrete combinations. Although there is no significant noticeable influence on strength development, the presence of GGBS did not adverse the strength development of POFA blended concrete. Thus, it can be concluded that GGBS compensates the adverse effect of POFA at early strength development.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 544
Author(s):  
Justyna Czajkowska ◽  
Maciej Malarski ◽  
Joanna Witkowska-Dobrev ◽  
Marek Dohojda ◽  
Piotr Nowak

Contact of concrete with aggressive factors, technological structures, reduces their durability through microstructural changes. This work presents the results of research on determining the influence of post grit chamber sewage and sewage from the active sludge chamber in three different environments, i.e., acidic, neutral, and alkaline, on the structure and compressive strength of concrete. Compressive strength tests were carried out after 11.5 months of concrete cubes being submerged in the solutions and compared. To complete the studies, the photos of the microstructure were done. This made it possible to accentuate the relationship between the microstructure and performance characteristics of concrete. The time of storing the cubes in both acidic environments (sewage from post grit chamber and active sludge chamber) has a negative influence on their compressive strength. The compressive strength of cubes decreases along with the time. Compressive strength of cubes increases with increasing pH of the environment.


2019 ◽  
Vol 9 (2) ◽  
pp. 47-54
Author(s):  
Fepy Supriani ◽  
Mukhlis Islam

Concrete strength is influenced by several variables, among others by its constituent material, mix design, workmanship, and curing. The objective of concrete curing is to maintain the concrete in certain conditions after the dismantling of the formwork hence the optimization of concrete strength can be achieved close to the designed strength. This study aims to determine the effect of concrete curing on its compressive strength. Designed concrete compressivestrength of 20 MPa with slump values of 60-100 mm to be used. The specimens are cube-shaped with 15 cm dimension. Concrete compressive strength tests were conducted at 28 days and 56 days of concrete age. The types of concrete curing consist of 9 variations, i.e., not treated, water immersed and water sprinkling. Optimum 28 days age of compressive strength of concrete obtained from specimens that immersed in fresh water, which was 31,3 MPa. The concretespecimens that were put outdoor without any curing and treatment generates second highest compressive strength value of 28.6 MPa. The 28 days age of concrete compressive strength values cured with water sprinkling with addition of burlap wrapping are still under the compressive strength of uncured concrete. Significant changes to the strength of cured concrete occurred at age of 56 days and uncured concrete strength decreased up to 19%. The optimum increase occurred in concrete cured with burlap sack wrapping and water sprinkling that was conducted routinely for 3 days by 27,84%. With increasing age (durability) the treated concrete has better strength.


2013 ◽  
Vol 821-822 ◽  
pp. 1204-1207
Author(s):  
Xiao Fan Liu ◽  
Ting Wang ◽  
Ji Xiang Li

In order to improve the hardness and strength of the permeable concrete, rigid polymeric fibers are mixed to the concrete. Compressive strength tests, flexural strength tests, tensile splitting strength tests and permeable performance tests prove that the rigid polymeric fibers could increase the hardness and strength of the permeable concrete. The optimized mix proportion and forming process are recommended to support the application of the permeable concrete.


Along with the advancement of time, technology in the field of building construction, especially concrete manufacturing, is also experiencing very rapid development, almost every aspect of human life is always associated with concrete. The use of added materials has been done in the process of concrete admixture. Based on this, this study aimed to determine the increase in optimal compressive strength of concrete with additional material of husk charcoal and compressive strength of the plan at 28 days is 20 MPa. In this study using the percentage variation of husk charcoal 0 %, 2 %, 4 %, and 6 % by weight of cement. The analytical review of this research is the compressive strength, with concrete cylindrical specimens having a diameter of 15 cm and a height of 30 cm. The concrete mix planning method uses the Indonesian National Standard (SNI) method. The material for this experiment is rice husk which is made into charcoal by manual process. After testing and research, the results show that the use of rice husk charcoal results in reduced workability because the absorption capacity of rice husk is quite high, and the strength of concrete with the addition of husk charcoal by 2 %, 4 %, and 6 % concrete increases its strength from compressive strength concrete plans of 20 MPa. Concrete compressive strength with a mixture of 2% husk charcoal produces compressive strength of 24, 3 MPa, there is an increase of 4, 3 MPa with the addition of husk charcoal by 2 %.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Jorge Luis Santamaria ◽  
Vanessa Valentin

Structured and unstructured factors affect concrete product. Structured factors are related to concrete production and unstructured factors are related to the construction process. This study focuses on examining the perceived importance of unstructured factors (i.e., construction-related factors) on concrete compressive strength, concrete costs and production rates on the jobsite and understanding the influence of construction experts’ characteristics, such as profession, on their perceptions. A comprehensive literature review was performed to identify unstructured factors. A survey was then designed and deployed to 297 experts from the construction industry and academia to examine the importance of the identified factors through the relative importance index (RII) method and to further identify additional unstructured factors. Likert aggregation and tests for equality of odds were used to compare and analyze responses of two groups of participants, namely architects and engineers. Curing humidity, crew experience and compaction method are the top three factors perceived to affect concrete compressive strength, whereas crew experience, mixing time and compaction method are the factors perceived to affect concrete costs and production rates the most. Crew experience, compaction method and mixing time dominate the global ranking of perceived affecting factors for concrete compressive strength, costs and production rates. Architects were found to be more likely to perceive high or very high impacts of these factors on concrete. The present study increases our understanding of construction-related factors to facilitate project management and preserve concrete characteristics.


2018 ◽  
Vol 4 (4) ◽  
pp. 88
Author(s):  
Reza Fauzi Nirwan ◽  
Priyanto Saelan

ABSTRAKPenelitian ini dilakukan untuk mengetahui hasil perancangan campuran beton abu terbang yang mensubtitusi semen dengan cara pendekatan sand blended, yaitu abu terbang yang mensubtitusi semen diperlakukan sebagai agregat halus, sehingga agregat halus merupakan campuran dari pasir dan abu terbang. Penelitian dilakukan dengan kuat tekan rencana 20 MPa dan 30 MPa. Substitusi semen oleh abu terbang sebesar  10 %, 20 %, dan 30 % dari berat semen. Ukuran maksimum agregat kasar yang digunakan adalah 20 mm, dan pasir dengan modulus kehalusan 2,768, slump rencana 6 cm dan 10 cm. Hasil pengujian tekan silinder beton berdiameter 10 cm dan tinggi 20 cm menunjukkan bahwa kuat tekan beton abu terbang yang dihasilkan berdekatan dengan beton acuan yaitu beton tanpa abu terbang, untuk semua kadar abu terbang yaitu sampai dengan kadar subtitusi semen oleh abu terbang sebesar 30 %. Pendekatan sand blended dapat dilakukan dalam perancangan campuran beton abu terbang.Kata Kunci : beton abu terbang, kuat tekan, pasir blendedABSTRACTThis is research was performed to know the result of the test of fly ash concrete mix designed by sand blended method. Fly ash will be treated as fine aggregate so that the total fine aggregate is the consist of fly ash and sand. 20 MPa and 30 MPa concrete mix are designed for 10 %, 20 % and 30 % by weight of cement subtitution by fly ash. Concrete mix use 20 mm maximum aggregate size, finess modulus of sand 2.768, and 6 cm and  10 cm slump. Compressive strength tests of 10 cm diameter and 20 cm height cylinder showed that the stength of fly ash concrete is the same as the strength of initial concrete. Fly ash concrete mix can be designed by sand blended approximation.Keywords : fly ash concrete, compressive strength, blended sand


2018 ◽  
Vol 24 (11) ◽  
pp. 53
Author(s):  
Ahmed Faleh Al-Bayati

The aim of this study is to propose reliable equations to estimate the in-situ concrete compressive strength from the non-destructive test. Three equations were proposed: the first equation considers the number of rebound hummer only, the second equation consider the ultrasonic pulse velocity only, and the third equation combines the number of rebound hummer and the ultrasonic pulse velocity. The proposed equations were derived from non-linear regression analysis and they were calibrated with the test results of 372 concrete specimens compiled from the literature. The performance of the proposed equations was tested by comparing their strength estimations with those of related existing equations from literature. Comparisons revealed that the proposed ultrasonic pulse velocity and combined equations achieved better agreements with the test results than the related existing equations, whereas the proposed and the existing rebound hummer equations were inconsistent.  


Sign in / Sign up

Export Citation Format

Share Document