scholarly journals Flexible grippers for industrial robots – comparison of features of low-cost 3D printed component

2019 ◽  
Vol 254 ◽  
pp. 02020
Author(s):  
Piotr Zbroja ◽  
Ksawery Szykiedans ◽  
Wojciech Credo

The aim of presented work was to analyse the feasibility of using 3D-print technology in robotics based on the production of industrial robot flexible grippers. For selected geometry of gripper single finger available 3D printing techniques has been analysed. The study made by authors uses the following additive technologies and devices: SLS (Selective laser Sintering) and FDM (Fused deposition modelling). As a prior an analyses of capabilities of individual technologies were done by testing the quality of the 3D CAD model recreated on test print-outs. Based on the printed gripper, its functionality, and strength properties were examined. Strength of grapplers was tested with a use of an MTS test machine under repeating deflexion simulating standard operational cycle of a gripper. Test proved that at least few thousands of cycle are possible to be made by a 3D printed gripper. What interesting gripper made with use of the less advanced printer showed different wear behaviour than an one made on the more advanced. First one showed almost instantaneous start of slow and constant strength degradation while the second one proved to have a stable deflexional capability by almost twice an number of cycles. More isotropic structure of an SLS printed gripper caused the best results of all tested ones.

2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3555
Author(s):  
Patrich Ferretti ◽  
Gian Maria Santi ◽  
Christian Leon-Cardenas ◽  
Elena Fusari ◽  
Giampiero Donnici ◽  
...  

Additive manufacturing processes have evolved considerably in the past years, growing into a wide range of products through the use of different materials depending on its application sectors. Nevertheless, the fused deposition modelling (FDM) technique has proven to be an economically feasible process turning additive manufacture technologies from consumer production into a mainstream manufacturing technique. Current advances in the finite element method (FEM) and the computer-aided engineering (CAE) technology are unable to study three-dimensional (3D) printed models, since the final result is highly dependent on processing and environment parameters. Because of that, an in-depth understanding of the printed geometrical mesostructure is needed to extend FEM applications. This study aims to generate a homogeneous structural element that accurately represents the behavior of FDM-processed materials, by means of a representative volume element (RVE). The homogenization summarizes the main mechanical characteristics of the actual 3D printed structure, opening new analysis and optimization procedures. Moreover, the linear RVE results can be used to further analyze the in-deep behavior of the FDM unit cell. Therefore, industries could perform a feasible engineering analysis of the final printed elements, allowing the FDM technology to become a mainstream, low-cost manufacturing process in the near future.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3101
Author(s):  
Abishek Kafle ◽  
Eric Luis ◽  
Raman Silwal ◽  
Houwen Matthew Pan ◽  
Pratisthit Lal Shrestha ◽  
...  

Additive manufacturing (AM) or 3D printing is a digital manufacturing process and offers virtually limitless opportunities to develop structures/objects by tailoring material composition, processing conditions, and geometry technically at every point in an object. In this review, we present three different early adopted, however, widely used, polymer-based 3D printing processes; fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA) to create polymeric parts. The main aim of this review is to offer a comparative overview by correlating polymer material-process-properties for three different 3D printing techniques. Moreover, the advanced material-process requirements towards 4D printing via these print methods taking an example of magneto-active polymers is covered. Overall, this review highlights different aspects of these printing methods and serves as a guide to select a suitable print material and 3D print technique for the targeted polymeric material-based applications and also discusses the implementation practices towards 4D printing of polymer-based systems with a current state-of-the-art approach.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2682
Author(s):  
Obinna Okolie ◽  
Iwona Stachurek ◽  
Balasubramanian Kandasubramanian ◽  
James Njuguna

There is a rising demand for replacement, regeneration of tissues and organ repairs for patients who suffer from diseased/damaged bones or tissues such as hip pains. The hip replacement treatment relies on the implant, which may not always meet the requirements due to mechanical and biocompatibility issues which in turn may aggravate the pain. To surpass these limitations, researchers are investigating the use of scaffolds as another approach for implants. Three-dimensional (3D) printing offers significant potential as an efficient fabrication technique on personalized organs as it is capable of biomimicking the intricate designs found in nature. In this review, the determining factors for hip replacement and the different fabrication techniques such as direct 3D printing, Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS) and stereolithography (SLA) for hip replacement. The study also covers surface modifications of 3D printed implants and provides an overview on 3D tissue regeneration. To appreciate the current conventional hip replacement practices, the conventional metallic and ceramic materials are covered, highlighting their rationale as the material of choice. Next, the challenges, ethics and trends in the implants’ 3D printing are covered and conclusions drawn. The outlook and challenges are also presented here. The knowledge from this review indicates that 3D printing has enormous potential for providing a pathway for a sustainable hip replacement.


2019 ◽  
Vol 3 (2) ◽  

Experimental design has been used to determine outlying factors that affect tensile strength of fused deposition modelling 3D printed PLA parts. A two level, three factor full factorial experiments were utilized to determine the best combination of factors that yielded the highest tensile strength of PLA tensile dog bones manufactured in accordance with ASTM D638-14. PLA is particularly desirable due to its environmental friendliness, biodegradability, low cost, and low melting point, allowing it to be built on a non-heated platform without risk of toxic fumes. Increasing the tensile strength of PLA will allow PLA to be used in a wider range of applications that demand stronger plastic parts. The chosen factors were infill percentage, nozzle temperature, and printing speed. The tensile strength was affected by all factors and combinations except for high levels of infill percentage, nozzle temperature, and printing speed combined.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253181
Author(s):  
Caterina Amendola ◽  
Michele Lacerenza ◽  
Ileana Pirovano ◽  
Davide Contini ◽  
Lorenzo Spinelli ◽  
...  

The interest for Fused Deposition Modelling (FDM) in the field of Diffuse Optics (DO) is rapidly increasing. The most widespread FDM materials are polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS), thanks to their low cost and easiness-to-print. This is why, in this study, 3D printed samples of PLA and ABS materials were optically characterized in the range from the UV up to the IR wavelengths, in order to test their possible employment for probe construction in DO applications. To this purpose, measurements with Near Infrared Spectroscopy and Diffuse Correlation Spectroscopy techniques were considered. The results obtained show how the material employed for probe construction can negatively affect the quality of DO measurements.


2018 ◽  
Vol 24 (8) ◽  
pp. 1305-1316 ◽  
Author(s):  
Juliana Breda Soares ◽  
João Finamor ◽  
Fabio Pinto Silva ◽  
Liane Roldo ◽  
Luis Henrique Cândido

Purpose This paper aims to analyse the effect of different polylactic acid (PLA) colours used on fused deposition modelling (FDM), considering the product finishing quality produced with the same process conditions. Design/methodology/approach The methodology adopted was to design a virtual modelling object and three-dimensional (3D) print it with FDM with different PLA colours (natural, green and black), using the same parameters. 3D scanning and scanning electron microscopy was used to analyse the model finishing of each sample. Fourier-transform infrared spectroscopy analysis, thermogravimetric analysis and dynamic mechanical analysis were used to characterize the material and verify if the colour affected its thermal behaviour. Findings Findings showed that different PLA colours lead to distinct 3D printed finishings under the same process conditions. Thermal analysis showed a reason for the printing finishing difference. The degradation temperatures and the glass temperatures vary depending on the PLA colour. This affects the FDM working temperature. Originality/value This study will contribute to improving the finishing quality of 3D printed products by collaborating to the determination of its process conditions.


2021 ◽  
Vol 22 (15) ◽  
pp. 8064
Author(s):  
Giulia Ballacchino ◽  
Edward Weaver ◽  
Essyrose Mathew ◽  
Rossella Dorati ◽  
Ida Genta ◽  
...  

Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.


2018 ◽  
Vol 919 ◽  
pp. 230-235 ◽  
Author(s):  
Jaroslav Maloch ◽  
Eva Hnátková ◽  
Milan Žaludek ◽  
Petr Krátký

3D printing technology enables the production of functional components in small quantities which can be used as end-use parts. The mechanical properties of the final product define its quality and determine its success or failure in a given application. One at the various additive manufacturing technologies - Fused Deposition Modelling is very often used due to its relatively low cost and the availability of 3D printers and thermoplastic materials. During the process, there are many factors that can affect the mechanical properties of the final product. The temperature of the extrusion nozzle and the layer thickness are two of the basic process parameters. The objective of this work is to investigate the effect of these two processing parameters on the final mechanical properties of the 3D printed samples from acrylonitrile butadiene styrene. Mechanical testing includes the tensile and flexural strength, as well as tensile and flexural modulus.


2021 ◽  
Vol 5 (4) ◽  
pp. 78
Author(s):  
Beatrice Sabbatini ◽  
Alessandra Cambriani ◽  
Marco Cespi ◽  
Giovanni Filippo Palmieri ◽  
Diego Romano Perinelli ◽  
...  

Three-dimensional (3D) printing, or additive manufacturing, is a group of innovative technologies that are increasingly employed for the production of 3D objects in different fields, including pharmaceutics, engineering, agri-food and medicines. The most processed materials by 3D printing techniques (e.g., fused deposition modelling, FDM; selective laser sintering, SLS; stereolithography, SLA) are polymeric materials since they offer chemical resistance, are low cost and have easy processability. However, one main drawback of using these materials alone (e.g., polylactic acid, PLA) in the manufacturing process is related to the poor mechanical and tensile properties of the final product. To overcome these limitations, fillers can be added to the polymeric matrix during the manufacturing to act as reinforcing agents. These include inorganic or organic materials such as glass, carbon fibers, silicon, ceramic or metals. One emerging approach is the employment of natural polymers (polysaccharides and proteins) as reinforcing agents, which are extracted from plants or obtained from biomasses or agricultural/industrial wastes. The advantages of using these natural materials as fillers for 3D printing are related to their availability together with the possibility of producing printed specimens with a smaller environmental impact and higher biodegradability. Therefore, they represent a “green option” for 3D printing processing, and many studies have been published in the last year to evaluate their ability to improve the mechanical properties of 3D printed objects. The present review provides an overview of the recent literature regarding natural polymers as reinforcing agents for 3D printing.


Sign in / Sign up

Export Citation Format

Share Document