scholarly journals Investigation of rock bolting for tunnels based on an efficient CATIA-ABAQUS model

2019 ◽  
Vol 295 ◽  
pp. 03002
Author(s):  
Hui Lee ◽  
Wei-zhong Chen ◽  
Xian-jun Tan ◽  
Qiao-chu Yang ◽  
Xiao-gang Wang

As a widely used reinforcement method in tunnel engineering, the accuracy of models in numerical analysis has a vital influence on the reliability of the analysis results. To solve the problem of hard modeling for complicated models, this paper proposes to build models of different characteristics automatically by the means of Enterprise Knowledge Language (EKL) of CATIA, combining knowledge engineering template with parameterization. Furthermore, the stability of surrounding rocks and the distribution features of plastic areas were studied in different cases by CATIA-ABAQUS model. Besides, the effects and contributions of several parameters, including the rock-bolt diameter and interval between rock-bolts have been studied. It was found that: (1) Rock-bolt has a notable effect on the stability of the surrounding rocks. Increasing the diameter of rock-bolts contributes to significantly reduce the plastic area and the vertical displacement. With the increase of the quantity and the diameter of anchors, the degree of influence gradually weakens, showing the logarithmic relationship; (2) When the quantity and diameter of rock-bolts are constant, in the case in which the intervals between rock-bolts are various, the plastic area of surrounding rocks and the axial stress of rock-bolts are larger than that of the same distance, while the vertical displacement are uniform. (3) The excavation process has a great influence on the axial stress of rock-bolts and the redistribution of stresses in the surrounding rock.

2014 ◽  
Vol 59 (3) ◽  
pp. 641-654 ◽  
Author(s):  
Tadeusz Majcherczyk ◽  
Zbigniew Niedbalski ◽  
Piotr Małkowski ◽  
łukasz Bednarek

Abstract The result of the search for new technological solutions in the field of support for roadways in coal mines has in recent years been the widespread use of steel arch with rockbolt support systems. The efficiency of these systems is affected among other things by the option of installing rock bolts after the actual driving the mine roadway, the increased load capacity that these systems can support, and their resistance to dynamic weight. Large variation in the way that these steel arch support can be connected using different types of rock bolts necessitates mining research revealing the effectiveness of such solutions. Although the steel arch with rockbolt support system is used in the majority of European coal mines, it is still not possible to apply templates of schemes due to the diversity of geological and mining conditions. Therefore, throughout a period of several years, the authors of this article conducted research in situ under conditions of different schemes related to connecting arched support frames with rock bolts, with only selected results being presented in the article. The measurements of convergence, load supported by the system frame, load supported by the rock bolts, and the stratification of roof rocks were analyzed, carried out in two roadways with yielding steel arch support in which strand bolts were applied. The article also proposes the index for working maintenance nuw, used in preliminarily assessing the stability of a given working with a limited number of data concerning geomechanical conditions. Additionally considered are empirical methods used in Poland for designing steel arch with rock bolt support systems. The results of mine research indicate that strengthening yielding steel support with strand bolts through steel beams maintains the stability of a roadway, even when exposed to the exploitation stress. Aside from the impact of exploitation, deformations of the support system are negligible, despite the fact that the tensile forces acting on the rock bolts can reach values of up to 160 kN. Under favorable geological and mining conditions, support system frames can be spread up to 1.5 m apart when using rock bolts between them. The conducted measurement of convergence during a three year period revealed a compression amounting to a few centimeters. The results obtained by the research fully confirm the effectiveness of combined yielding steel arch with rock bolt support systems under different mining conditions.


Author(s):  
Adrian Batugin ◽  
Zhiqiang Wang ◽  
Zehua Su ◽  
Shermatova Sayyora Sidikovna

AbstractUsing the spatial structure of the external staggered split-level panel layout, a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism. The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software. The optimal support parameters of the side rock bolts and anchor cables were subsequently determined, and the support effect of gob-side entry in a mining scenario was verified. The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body, producing a good protective effect on the coal body of the air-intake entry roof and side wall. This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables, which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable.


Author(s):  
Jianhang Chen ◽  
Hongbao Zhao ◽  
Fulian He ◽  
Junwen Zhang ◽  
Kangming Tao

AbstractNumerical simulation is a useful tool in investigating the loading performance of rock bolts. The cable structural elements (cableSELs) in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues. In this study, the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model. Furthermore, the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs. Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts. Based on the modified cableSELs, the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied. The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently. With the bolt diameter increasing, the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour. Moreover, after the rock bolt was loaded, the position where the maximum shear stress occurred was variable. Specifically, with the continuous loading, it shifted from the rock bolt loaded end to the other end.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


2007 ◽  
Vol 342-343 ◽  
pp. 505-508
Author(s):  
Sung Won Kim ◽  
Yun Sik Nam ◽  
Yeon Jin Min ◽  
Jong Ho Kim ◽  
Kwang Meyong Kim ◽  
...  

Stability and disintegration of natural polyelectrolyte complex microspheres for protein drugs delivery have been extensively investigated because of their great influence on the drug release patterns. In this study, we tested stability of microspheres with alginate (Alg) core layered by either chitosan (Chi) or glycol chitosan (GChi) by examining release profiles of fluorophorelabeled bovine serum albumin (BSA) and lysozyme (Lys) from the microspheres. While GChi shell was disintegrated quickly, Chi-shell microspheres showed good stability in PBS. Disintegration of the coated layer induced the core material instable. The results indicated that while the charges of the shell material provided additional diffusion barrier against the protein release, the key factor to hold the proteins inside the microspheres was the integrity of the outer coating layer.


2017 ◽  
Vol 11 (1) ◽  
pp. 301-311
Author(s):  
Felipe J. Fernández-González ◽  
Jorge Cabero-López ◽  
Aritza Brizuela ◽  
Ivan Suazo ◽  
Esteban Pérez-Pevida ◽  
...  

Background:For patients whose centric relation (CR) has not been considered at the start and during treatment, the task of achieving an occlusal scheme that works together with the temporomandibular joint, the muscles, and the structures of the stomatognathic apparatus becomes a major concern.Objective:This study aims to describe a reproducible, predictable and to date unreported procedure of selective grinding guided by an occlusal splint and to analyze condylar position (CP) based on the skeletal pattern.Methods:A total of 72 symptomatic patients (38 females and 34 males) were classified into three groups: hyperdivergent, intermediate and hypodivergent. CP was quantified by mounted casts on a measures condyle displacement (MCD) device. Helkimo index was also performed in order to assess the severity of the temporomandibular joint (TMJ) disorders attending to clinical dysfunction, occlusal state and anamnestic dysfunction. Once the stability had been obtained, the splint was progressively reduced until the maximum intercuspation (MIC) was achieved.Results:The vertical displacement was found to be significantly different between the hyperdivergent and other two groups (p<0.01). Comparisons of MCD analysis before and after the selective grinding procedure identified a statistically significant difference in the horizontal and vertical CP (p<0.01) between the different groups whereas the Helkimo Index showed a clear improvement of TMJ disorders.Conclusion:All facial types, specially the hyperdivergent face type, showed a reduction in condylar displacement (CD) and less craniomandibular symptoms using this procedure, making it an excellent technique for clinicians.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Zhu ◽  
Guang-chao Wang ◽  
Qing-peng Han ◽  
An-lei Zhao ◽  
Jian-xing Ren ◽  
...  

Rotor rub-impact has a great influence on the stability and safety of a rotating machine. This study develops a dynamic model of a two-span rotor-bearing system with rubbing faults, and numerical simulation is carried out. Moreover, frictional screws are used to simulate a rubbing state by establishing a set of experimental devices that can simulate rotor-stator friction in the rotor system. Through the experimental platform and its analysis system, the rubbing experiment was conducted, and the vibration of the rotor-bearing system before and after the critical speed is observed. Rotors running under normal condition, local slight rubbing, and severe rubbing throughout the entire cycle are simulated. Dynamic trajectories, frequency spectrum diagrams, chart of axis track, and Poincare maps are used to analyze the features of the rotor-bearing system with rub-impact faults under various parameters. The vibration characteristics of rub impact are obtained. Results show that the dynamic characteristics of the rotor-bearing system are affected by the change in velocity and degree of impact friction. The findings are helpful in further understanding the dynamic characteristics of the rub-impact fault of the two-span rotor-bearing system and provide reference for fault diagnosis.


2020 ◽  
Vol 8 (4) ◽  
pp. 291
Author(s):  
Hu Wang ◽  
Jian Chen ◽  
Hongjun Liu ◽  
Lei Guo ◽  
Yao Lu ◽  
...  

In the construction of subsea tunnels, the stability and control of the excavation surface are the main concerns of the engineering community. In this paper, the Xiamen Metro Line 2 is used as the study case. The filter cake formation of mud shields is experimentally studied, and the excavation surface is numerically simulated. It is found that the formation of filter cake does not require a large pressure difference, and can be formed under 0.06 MPa. With the increase of pressure, the quality of filter cake is further improved, and a small amount of seawater (volume ratio less than 3%) also has a significant effect on the viscosity of mud. Under different cross-section geological conditions, with the decrease of the support pressure of the excavation face, the vertical displacement and vertical (Y-direction) displacement of the excavation face dome gradually increase, the maximum longitudinal displacement is 9.7 mm, the maximum longitudinal displacement can reach 23.9 mm, and the growth trend is nonlinear. According to different stratum conditions, during the excavation of the tunnel, the plastic area of the excavation face is different.


2020 ◽  
Vol 10 (16) ◽  
pp. 5489
Author(s):  
Rulin Zhang ◽  
Shili Chu ◽  
Kailai Sun ◽  
Zhongtao Zhang ◽  
Huaifeng Wang

This paper investigates the effect of the multi-directional components of ground motion on an unanchored steel storage tank. Both the liquid sloshing effect and contact behavior between the foundation and tank are included in the study. A three-dimensional model for a foundation–structure–liquid system is numerically simulated using the finite element method. The Lagrange fluid finite element method (FEM) in ANSYS is used to consider the liquid–solid interaction. In the liquid–structure–foundation interaction model, the contact and target elements are adapted to simulate the nonlinear uplift and slip effects between the tank and the foundation. Three earthquake ground motions are selected for evaluating the seismic behavior of the tank. Comparisons are made on the horizontal displacement, “elephant-foot” deformation, stress, base shear and moment, sloshing of the liquid, uplift, as well as slip behavior under the application of the unidirectional, bi-directional and tri-directional components. Under the selected ground motions, the horizontal bi-directional seismic component has great influence on the liquid sloshing in the tank studied in this paper. The vertical seismic component produces high compressive axial stress, and it also makes the uplift and slide of the tank bottom increase significantly. The applicability of this conclusion should be carefully considered when applied to other types of ground motion inputs.


Sign in / Sign up

Export Citation Format

Share Document