scholarly journals Modelling and simulation of a cold storage room driven by a continuous adsorption refrigerator

2020 ◽  
Vol 330 ◽  
pp. 01024
Author(s):  
Kolthoum Missaoui ◽  
Slimane Gabsi ◽  
Nader Frikha ◽  
Abdelhamid Kheiri ◽  
Mohammed El Ganaoui

The present work proposes a continuous solar adsorption refrigerator for a positive cold storage room of 231 m3 used for fruits and vegetables preservation and installed in the south of Tunisia. After the estimation of the storage room cooling load, which is equal to 13 kW, a parametric study, aims to improve, the performance of the chiller is done in order to achieve the storage room need and to estimate the required heat in the refrigerator generator. A theoretical model, based on the thermodynamics of the adsorption process, heat and mass transfer within the porous medium and energy balance in the system components, is developed and a simulation with Matlab/Simulink, is carried out. The model was established and validated with the literature experimental data. A maximum coefficient of performance of 0.52 and cooling load of 22 kW are reached at cycle time of 800 seconds, the inlet temperatures of heating, cooling and chilled water are 85°C, 22°C and 15°C, respectively.

2001 ◽  
Vol 81 (4) ◽  
pp. 773-778 ◽  
Author(s):  
L. J. Skog, and C. L. Chu

Ozone at the concentration of 0.04 mL L–1 appears to have potential for extending the storage life of broccoli and seedless cucumbers stored at 3°C. Response to ozone was minimal for mushrooms stored at 4°C and cucumbers stored at 10°C. Ozone generators producing 0.04 mL L–1 ozone reduced the ethylene level in vegetable storage rooms from 1.5–2 mL L–1 (as produced by apples placed in the room) to a non-detectable level. At concentrations of 0.4 mL L–1, ozone was effective in removing ethylene from the atmosphere in an apple and pear storage room. The ozonized and non-ozonized apples and pears showed no difference in fruit quality. This study explored a potential use of ozone application in wholesale storage rooms where ethylene-producing and ethylene-sensitive fruits and vegetables may be stored together. Key words: Ozone, ethylene, fruit, vegetable, apple, pear, broccoli, cucumber, mushroom, storage


2021 ◽  
Vol 1 (1) ◽  
pp. 23
Author(s):  
M.Pramuda Nugraha Sirodz ◽  
Lucyana Balqis

Abstrak Buncis merupakan salah satu produk pertanian di Indonesia yang diekspor ke luar negeri. Setelah dipanen, buncis disimpan untuk diproses sebelum diekspor ke konsumen. Kesegaran buncis umumnya hanya bertahan selama 1 minggu, oleh karena itu diperlukan alat khusus untuk mempertahankan kesegaran buncis sebelum diekspor ke konsumen. Untuk mempertahankan kesegaran buncis, temperatur udara 4°C-7°C dengan kelembaban 90%-95% perlu dipertahankan. Dengan menggunakan cold strorage, kondisi ruang penyimpanan dapat diatur sedemikian rupa agar memenuhi kriteria tersebut. Pada penelitian ini dirancang sebuah cold storage dengan kapasitas 10 ton untuk tanaman buncis. Cooling Load Temperatur Difference (CLTD) pada perancangan ini diatur bulan dan waktunya yang disesuaikan dengan posisi dari cold storage. Beban pendinginan total untuk 10 ton buncis adalah sebesar 46,73 kW. Cold storage hasil rancangan menggunakan siklus kompresi uap dengan fluida refrigeran R134a tanpa menggunakan humidifier. Untuk mempertahankan kondisi udara pada cold storage agar sesuai dengan kebutuhan, kompressor AC dengan kapasitas 12,7 kW digunakan pada siklus kompresi uap. Performa dari siklus kompresi uap dengan kondisi operasi tersebut ditentukan oleh Coefficient of Performance (COP). Semakin besar nilai COP, maka sistem  semakin efisien. Coefficient of Performance (COP) dari siklus tersebut adalah sebesar 3,84. Kata kunci: Buncis, CLTD, Refrigeran, COP, Siklus kompresi uap Abstract                                                                                                                                                                                                            Snap beans are one of Indonesian acgricultural product exported to overseas. After harvested, snap beans were stored before exported to consumers. The freshness of the snap beans only lasted for one week, therefor special equipment were required to maintain the snap beans freshness. To maintain the freshness, snap beans must be storage in a room with 4-7°C air temperature and 90-95% humidity. In this research, cold storage was designed for 10 tons of snap beans. Cooling Load Temperature Difference method was used to determine the load of the cold storage based on the position of the building. The total cooling load for 10 tons of snap beans were 46,73 kW. The cold storage was using vapor compression cycle with  refrigerant 134a without humidifier . The cycle requires compressor power of 12,7 kW to maintain the condition in the cold storage room. The performance of the cycle was determined from the Coefficient of Performance (COP). The higher value of the COP, the system will be more efficient. The COP of the vapor compression cycle  was 3,84.   Key words: Snap Beans, Export, Refrigerant, Storage, Humidity.


2019 ◽  
Vol 7 (1) ◽  
pp. 12-22
Author(s):  
Ratu Mutia Fajarani ◽  
Yopi Handoyo ◽  
Raden Hengki Rahmanto

Cooling is the best preservation method than others because the food that has been cooled will remain fresh and will not experience a change in taste, color and aroma, besides all the activities that cause decay will stop so that the cooled food will last longer. (Hartanto, 1984). With the proper cooling engine planning, it can help with spatial adjustments, adjustments to loading, estimation of the power to be used, and budget plans. That is what is commonly called the cooling load calculation. Calculation of cooling load needs to be carried out before planning. This is necessary because the magnitude of the pending load is very influential on the selection of the cooling engine so that the freezing point for preserving food can be accurate. Pendiginan burden is influenced by external and internal factors. With the experimental method, it is obtained the results of the external cooling load as the external cooling load is 11.6 kW, the inner cooling load is 138.8 kW and the performance work coefficient (COP) is 2.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 949
Author(s):  
Maged Mohammed ◽  
Nashi Alqahtani ◽  
Hamadttu El-Shafie

Dates are subjected to postharvest losses in quality and quantity caused by water loss, fermentation, insect infestation, and microbial spoilage during storage. Cold storage is the main element in the postharvest quality management used for fruit preservation. Although cold storage is used for dates, precision control of the relative humidity (RH) using ultrasonic applications is not used thus far, or it is applied to other fruits on a small scale. Therefore, we designed and constructed an ultrasonic humidifier (DUH) for RH control in the cold storage room (CSR) of dates. The optimum air velocity of 3 m s−1 at the outlets of the DUH ducts produced a mist amount of 6.8 kg h-1 with an average droplet diameter of 4.26 ± 1.43 µm at the applied voltage of 48 V and frequency of 2600 kHz of the transducers. The experimental validation was carried out by comparing a CSR controlled with the DUH with two conventional CSRs. The three tested CSRs were similar in dimensions, cooling system, and amount of stored dates. The time required for cooling 800 kg of dates in the controlled CSR from 25 °C to the target temperature of 5 °C was approximately 48 h. The DUH precisely controlled the RH at the maximum RH set point of 80% in the tested CSR at 5 °C. The controlled RH at 80% has a positive impact on the physicochemical characteristics of the stored dates. It significantly reduced the weight loss of the fruits and preserved fruit mass, moisture content, water activity, firmness, and color parameters. However, no significant effect was observed on fruit dimensions, sphericity, and aspect ratio. The microbial loads of mesophilic aerobic bacteria, molds, and yeasts fell within the acceptable limits in all tested CSRs. Both stored date fruits and artificially infested dates showed no signs of insect activity in the controlled CSR at the temperature of 5 °C and RH of 80%. The DUH proved to be a promising technology for postharvest quality management for dates during cold storage.


2012 ◽  
Vol 614-615 ◽  
pp. 64-68
Author(s):  
Tuo Wang ◽  
Feng Wu ◽  
Jin Hua Fei ◽  
Ming Fang Liu

Thermo-acoustic refrigerator is a new type of engine, which is based on the thermo-acoustic effect. A new model which expresses as an ellipse in pressure-volume diagram is established to investigate the thermodynamic performance of an actual thermo-acoustic refrigeration micro-cycle. The demarcation points of endothermic processes and exothermic processes in the actual micro-cycle are found. The analytic expressions of the dimensionless cooling load and the coefficient of performance (COP) are deduced. The relationship between the dimensionless cooling load and the COP are investigated by numerical examples. The results show that the dimensionless cooling load is a monotonically increasing function of the COP and the pressure amplitude.


Author(s):  
Behzad Omidi Kashani

The present research is about increasing the energy efficiency ratio (EER) in current direct evaporative coolers (DEC) in Iran. Increasing the cooling load and reducing the electrical energy consumption simultaneously (increasing the energy efficiency ratio (EER)) in DEC are the main goals of manufacturers and consumers of this device. When the circulation water pump runs continuously (static state), the circulation water rate is about 1.89 to 2.90 times of the amounts recommended in the reasonable standards. In order to adjust the circulation water rate to the recommended amount by standards, the present study has utilized repetitive cyclic scheduling programs to reduce the circulation rate to the optimal amount, (by turning the circulation pump on and off by dynamic pattern operation). In other words, the circulation pump stays on only for a certain period of a working cycle, and then the pump stays off for the rest of it. The cooling load and EER were measured based on ASHRAE 133 (2015). The results indicated that the cooling load in the dynamic state increased by 5.03 and 6.18 percent compared to the static state at low and high fan speeds, respectively. Moreover, in comparison with the static state, the amount of electrical energy consumed (kW-hr) in the dynamic state decreased by 8.8 and 4.2 percent at low and high fan speeds, respectively. Finally, the coefficient of performance (COP or EER) of the DEC in the dynamic state is increased by 15.16 and 10.78 in comparison with the static state at low and high fan speeds, respectively.


Author(s):  
Emmanuel E. Anyanwu ◽  
Nnamdi V. Ogueke

The transient analysis and performance prediction of a solid adsorption solar refrigerator, using activated carbon/methanol adsorbent/adsorbate pair are presented. The mathematical model is based on the thermodynamics of the adsorption process, heat transfer in the collector plate/tube arrangement, and heat and mass transfers within the adsorbent/adsorbate pair. Its numerical model developed from finite element transformation of the resulting equations computes the collector plate and tube temperatures to within 5°C. The condensate yield and coefficient of performance, COP were predicted to within 5% and 9%, respectively. The resulting evaporator water temperature was also predicted to within 4%. Thus the model is considered a useful design tool for the refrigerator to avoid costly experimentation.


Author(s):  
A. YUNUS NASUTION ◽  
ADITYA PRATAMA

The initial problems of fishermen still use their semi-modern catches and still use ice cubes as a cooling medium, due to the lack of innovation in the development of the cooling media caught by fishermen. The implementation of solar panel energy is the beginning for the development of refrigerator power consumption caught by fishermen. The goal is to calculate the cooling load on the refrigerator, calculate the Coefficient of performance (COP) at the refrigerator and the loading factors at the refrigerator, where the average ambient temperature is 34 ℃ and the temperature to be achieved is 0℃, the fisherman results used in the study this is a shrimp with a capacity of 20 kg and the cooling time is 4 hours. Where the total cooling load value is 244.29 Watt, multiplied by 10% safety factor, so the overall cooling load is 268.72 Watts, refrigerant mass flow rate is 0.0012 Kg / s, the evaporator capacity is 261 Watt, compressor power is 15.6 Watt, The coefficient of performance (COP) value was 16.73 while for the refrigerant capacity was 0.074 Tons of refrigerant, the loading factors in the study were used to run a refrigerator with 80 Watt power for 4 hours, so that the total refrigerator load was 320 Wh (Watt hour) , to produce 320 Wh power is used 2 solar panel modules with a capacity of 50 Wp (Watt Peak), and uses a solar change controller (SCC) with a capacity of 10 A. The output power of the solar panel is influenced by the intensity of the sun's light emitted, from the test obtained an average value the average output of solar panels is 90.6 watts, while the total power generated in 11 test points is 536 watts, the type used is polycrystalline, solar panels battery and inverter capacity must be greater than the refrigerator power consumption, in this study used a 12V 35 Ah battery capacity and 500 Watt Inverter


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2136 ◽  
Author(s):  
Bartosz Gil ◽  
Jacek Kasperski

Theoretical investigations of the ejector refrigeration system using hydrofluoroolefins (HFOs) and hydrochlorofluoroolefin (HCFO) refrigerants are presented and discussed. A comparative study for eight olefins and R134a as the reference fluid was made on the basis of a one-dimensional model. To facilitate and extend the possibility of comparing our results, three different levels of evaporation and condensation temperature were adopted. The generator temperature for each refrigerant was changed in the range from 60 °C to the critical temperature for a given substance. The performed analysis shown that hydrofluoroolefins obtain a high efficiency of the ejector system at low primary vapor temperatures. For the three analyzed sets of evaporation and condensation temperatures (te and tc equal to 0 °C/25 °C, 6 °C/30 °C, and 9 °C/40 °C) the maximum Coefficient of Performance (COP) was 0.35, 0.365, and 0.22, respectively. The best performance was received for HFO-1243zf and HFO-1234ze(E). However, they do not allow operation in a wide range of generator temperatures, and, therefore, it is necessary to correctly select and control the operating parameters of the ejector.


Sign in / Sign up

Export Citation Format

Share Document