On the effect of long service exposure: changes in microstructure and mechanical properties of Ni-based superalloy

2020 ◽  
Vol 117 (6) ◽  
pp. 624
Author(s):  
Hassan Keyvanlou ◽  
Reza Soleimani Gilakjani ◽  
Majid Nezakat

In the present study, the microstructure and the mechanical properties of GTD-111 nickel-based superalloy were investigated. The alloy was in service as the GE-MS9001 gas turbine 1st stage rotating blade for 105,000 hours at a temperature between 950 to 1000 °C. Two sets of samples were extracted from the airfoil and the root of the blade. Then, they were compared for the microstructural and the mechanical properties changes after the high temperature service. Stress-rupture and Charpy V-notch (CVN) tests were conducted on the samples at 871 °C and two temperatures of 25 and 900 °C, respectively. The microstructure and the fracture surface of the samples were analyzed using a scanning electron microscope (SEM). The results showed degradation in the microstructure and the mechanical properties of the airfoil compared to those of the root due to the long-term service at elevated temperatures. The loss in mechanical properties was due to the coarsening of γ’ precipitates and the formation of brittle phases in the grain boundaries.

2018 ◽  
Vol 18 (2) ◽  
pp. 27-36
Author(s):  
J. Łabanowski ◽  
M. Jurkowski ◽  
M. Landowski

AbstractThe paper analyses the relationship between an increase of the inner diameter of tubes made of Manaurite XM cast steel and transformations occurring in their microstructure due to long-lasting operation in methane reformer. Examinations included metallographic analysis with light microscope (LM), scanning electron microscope (SEM) and microanalysis of the chemical composition of precipitates (EDX). It was indicated that there is a relationship between the microstructure degradation ratio, morphology of the precipitates and an increase of the inner diameter of the tubes.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2014 ◽  
Vol 1004-1005 ◽  
pp. 148-153
Author(s):  
Min Hao ◽  
Ji Gang Ru ◽  
Ming Liu ◽  
Kun Zhang ◽  
Liang Wang ◽  
...  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to study the microstructure and mechanical behavior of an Al-Cu-Mg alloy after tensile test at 125°C, 150°C, 175°C and 200 °C, respectively. The yield strength and ultimate tensile strength decreased with the increase of temperature, while the elongation increased firstly and then decreased. The S and S′ precipitate after tension at elevated temperatures. When the temperature was higher than 175°C, the precipitate coarsens rapidly. The alloys displayed a shear fracture features at elevated temperature. The larger S′ and S phase coarsened and dropped which forming crack in the grain boundaries and precipitate interfaces, resulting in the decrease of the elongation of the alloy.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 398
Author(s):  
Chihao Liu ◽  
Jiajian Chen

At present, the research on the high temperature degradation of concrete usually focuses on only the degradation of concrete itself without considering the effect of the plastering layer. It is necessary to take into account the influence of the plastering layer on the high temperature degradation of concrete. With an increase in the water/cement ratio, the explosion of concrete disappeared. Although increasing the water/cement ratio can alleviate the cracking of concrete due to lower pressure, it leads to a decrease in the mechanical properties of concrete after heating. It is proved that besides the water/cement ratio, the apparent phenomena and mechanical properties of concrete at high temperature can be affected by the plastering layer. The plastering layer can relieve the high temperature cracking of concrete, and even inhibit the high temperature explosion of concrete with 0.30 water/cement ratio. By means of an XRD test, scanning electron microscope test and thermogravimetric analysis, it is found that the plastering layer can promote the rehydration of unhydrated cement particles of 0.30 water/cement ratio concrete at high temperature and then promote the mechanical properties of concrete at 400 °C. However, the plastering layer accelerated the thermal decomposition of C-S-H gel of concrete with a water/cement ratio of 0.40 at high temperature, and finally accelerate the decline of mechanical property of concrete. To conclude, the low water/cement ratio and plastering layer can delay the deterioration of concrete at high temperature.


2018 ◽  
Vol 18 ◽  
pp. 73-78
Author(s):  
Mokhtar Bayarassou ◽  
Mosbah Zidani ◽  
Hichem Farh

The scope of this work is to study of microstructural changes and mechanical properties during natural and artificial ageing treatment of AGS Alloy wire cold drawn with different deformation at ENICAB in Biskra. And as well to know the phase formation during different deformation of aluminum alloys wires. as well as the combined influence of the plastic deformation rate and the aging temperature. Wire section reduction shows a change in microstructure and texture. The methods of characterization used in this work are: scanning electron microscope and X-ray diffraction, micro hardness (Hv).


2018 ◽  
Vol 18 (06) ◽  
pp. 1850035
Author(s):  
Punyapriya Mishra ◽  
Narasingh Deep ◽  
Sagarika Pradhan ◽  
Vikram G. Kamble

Carbon nanotubes (CNTs) are widely explained in fundamental blocks of nanotechnology. These CNTs exhibit much greater tensile strength than steel, even almost similar to copper, but they have higher ability to carry much higher currents, they seem to be a magical material with all these mentioned properties. In this paper, an attempt has been made to incorporate this wonder material, CNT, (with varying percentages) in polymeric matrix (Poly methyl methacrylate (PMMA)) to create a new conductive polymer composite. Various mechanical tests were carried out to evaluate its mechanical properties. The dielectric properties such as dielectric loss and dielectric constant were evaluated with the reference of temperature and frequency. The surface structures were analyzed by Scanning Electron Microscope (SEM).


2021 ◽  
Vol 63 (2) ◽  
pp. 105-112
Author(s):  
Chuleeporn Paa-rai ◽  
Gobboon Lothongkum ◽  
Panyawat Wangyao

Abstract IN-738 turbine blade samples, deteriorated after long term service at high temperatures, were solution heat-treated at two temperatures, 1398 K and 1473 K, for 7.2 ks. Subsequently, the samples were cooled down in different atmospheres, in air and in furnace, for the purpose of studying the effects of different cooling media (rates) on the restored microstructures. Following this, the samples were aged at 1118 K for 43.2 ks and 86.4 ks in order to determine the characteristic of re-precipitated gamma prime particles. A scanning electron microscope (SEM) and ImageJ analysis software were used. The results show that the cooling in air provided gamma prime particles re-precipitating in spherical shape while the cooling in a furnace resulted in coarse gamma prime particles re-precipitating in irregular shape. The samples solutionized at 1398 K for 7.2 ks cooled down in air and then aging at 1118 K provided bimodal microstructure, while the sample solutionized at 1473 K for 7.2 ks, followed by air cooling and aging at 1118 K generated unimodal γ’ precipitation in spherical shape. Cooling in a furnace provides coarse γ’ recipitated particles in more irregular shape for the both solutionizing temperatures studied here. Cooling in a furnace provides coarse γ’ precipitated particles in more irregular shape for the both solutionizing temperatures studied here.


2020 ◽  
Vol 841 ◽  
pp. 114-118
Author(s):  
Marco Antonio Navarrete Seras ◽  
Francisco Javier Domínguez Mota ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

. Banks of stone materials from Michoacán, Mexico were characterized, since they are used in the construction of infrastructure in the area. With these materials are made hydraulic concrete mixtures or asphalt mixtures, foundations, paving stones and in restoration of historical monuments. The rocks analyzed and characterized, come from banks of volcanic stone materials and banks of crushed stone materials, which were subjected to mechanical tests such as uniaxial compression resistance (UCR), in addition was used scanning electron microscope (SEM), by means of which the characterization was carried out, obtaining morphological information of the material. The comparison of physical-mechanical properties with the elements they possess is important to estimate their behavior within ceramic matrices or as a structural element.


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


Sign in / Sign up

Export Citation Format

Share Document