Sulfation of Quercitrin, Epicatechin and Rutin by Human Cytosolic Sulfotransferases (SULTs): Differential Effects of SULT Genetic Polymorphisms

Planta Medica ◽  
2021 ◽  
Author(s):  
Xue Mei ◽  
Saud A. Gohal ◽  
Eid S. Alatwi ◽  
Ying Hui ◽  
Chunyan Yang ◽  
...  

AbstractRadix Bupleuri is one of the most widely used herbal medicines in China for the treatment of fever, pain, and/or chronic inflammation. Quercitrin, epicatechin, and rutin, the flavonoids present in Radix Bupleuri, have been reported to display anti-inflammatory, antitumor, and antioxidant biological activities among others. Sulfation has been reported to play an important role in the metabolism of flavonoids. In this study, we aimed to systematically identify the human cytosolic sulfotransferase enzymes that are capable of catalyzing the sulfation of quercitrin, epicatechin, and rutin. Of the thirteen known human cytosolic sulfotransferases, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1C2, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward quercitrin, three (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A3, and cytosolic sulfotransferase 1C4) displayed sulfating activity toward epicatechin, and six (cytosolic sulfotransferase 1A1, cytosolic sulfotransferase 1A2, cytosolic sulfotransferase 1A3, cytosolic sulfotransferase 1B1, cytosolic sulfotransferase 1C4, and cytosolic sulfotransferase 1E1) displayed sulfating activity toward rutin. The kinetic parameters of the cytosolic sulfotransferases that showed the strongest sulfating activities were determined. To investigate the effects of genetic polymorphisms on the sulfation of quercitrin, epicatechin, and rutin, individual panels of cytosolic sulfotransferase allozymes previously prepared were analyzed and shown to display differential sulfating activities toward each of the three flavonoids. Taken together, these results provided a biochemical basis underlying the metabolism of quercitrin, epicatechin, and rutin through sulfation in humans.

2021 ◽  
Vol 11 ◽  
Author(s):  
Mafusol Kaji ◽  
Panupong Puttarak

Aim: The development of a suitable standardized Cyanthillium cinereum (L.) H.Rob. extract is an active ingredient in healthcare products. Background: C. cinereum is the herbal tea specified in the Thai National List of Essential (herbal) Medicines (NLEM) as the most efficacious tea for smoking cessation. However, herbal tea is inconvenient, and no standardized C. cinereum extraction method was known. Objectives: The study aims to develop a standardized C. cinereum extract preparation method and determine its biological activities. Methods: Various extraction and fractionation methods were performed in order to optimize a suitable standardized extract. The extraction yield, biological activities, and biomarkers (apigenin and luteolin) of the HPLC method were used to select the most suitable extraction method. Results: The results showed that the microwave-assisted extraction (MAE) method with 75% EtOH was the most suitable method. The MAE method obtained apigenin and luteolin at 0.320±0.029 and 0.487±0.012 mg/g, respectively. MAE showed good anti-inflammatory and antioxidant (DPPH and FRAP assay) activities. Subsequently, the MAE extract was fractionated by the Diaion® HP-20 column in order to obtain the most suitable standardized extract. The 50% plus 75% EtOH fractions showed high apigenin (91.20±1.23 mg/g) and luteolin (167.00±0.49 mg/g) contents and exerted potent bioactivities. The standardized C. cinereum extract presented high effectiveness of NO inhibitory activity with an IC50 of 7.88±3.56 µg/mL, and also exerted DPPH scavenging efficacy with an IC50 value of 8.88±0.17 µg/mL and quercetin equivalent at 137.50±2.20 mg/g by FRAP assay. Conclusion : This study succeeded in developing a high-yield extraction method of standardized C. cinereum extract, with potent antioxidant and anti-inflammatory activities, suitable for various purposes.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4073 ◽  
Author(s):  
Waqas Alam ◽  
Haroon Khan ◽  
Muhammad Ajmal Shah ◽  
Omar Cauli ◽  
Luciano Saso

Inflammation is a physiological response to different pathological, cellular or vascular damages due to physical, chemical or mechanical trauma. It is characterized by pain, redness, heat and swelling. Current natural drugs are carefully chosen as a novel therapeutic strategy for the management of inflammatory diseases. Different phytochemical constituents are present in natural products. These phytochemicals have high efficacy both in vivo and in vitro. Among them, flavonoids occur in many foods, vegetables and herbal medicines and are considered as the most active constituent, having the ability to attenuate inflammation. Kaempferol is a polyphenol that is richly found in fruits, vegetables and herbal medicines. It is also found in plant-derived beverages. Kaempferol is used in the management of various ailments but there is no available review article that can summarize all the natural sources and biological activities specifically focusing on the anti-inflammatory effect of kaempferol. Therefore, this article is aimed at providing a brief updated review of the literature regarding the anti-inflammatory effect of kaempferol and its possible molecular mechanisms of action. Furthermore, the review provides the available updated literature regarding the natural sources, chemistry, biosynthesis, oral absorption, metabolism, bioavailability and therapeutic effect of kaempferol.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


2019 ◽  
Vol 16 (11) ◽  
pp. 1007-1017 ◽  
Author(s):  
James G. McLarnon

A combinatorial cocktail approach is suggested as a rationale intervention to attenuate chronic inflammation and confer neuroprotection in Alzheimer’s disease (AD). The requirement for an assemblage of pharmacological compounds follows from the host of pro-inflammatory pathways and mechanisms present in activated microglia in the disease process. This article suggests a starting point using four compounds which present some differential in anti-inflammatory targets and actions but a commonality in showing a finite permeability through Blood-brain Barrier (BBB). A basis for firstchoice compounds demonstrated neuroprotection in animal models (thalidomide and minocycline), clinical trial data showing some slowing in the progression of pathology in AD brain (ibuprofen) and indirect evidence for putative efficacy in blocking oxidative damage and chemotactic response mediated by activated microglia (dapsone). It is emphasized that a number of candidate compounds, other than ones suggested here, could be considered as components of the cocktail approach and would be expected to be examined in subsequent work. In this case, systematic testing in AD animal models is required to rigorously examine the efficacy of first-choice compounds and replace ones showing weaker effects. This protocol represents a practical approach to optimize the reduction of microglial-mediated chronic inflammation in AD pathology. Subsequent work would incorporate the anti-inflammatory cocktail delivery as an adjunctive treatment with ones independent of inflammation as an overall preventive strategy to slow the progression of AD.


2020 ◽  
Vol 24 (14) ◽  
pp. 1555-1581
Author(s):  
Garima Tripathi ◽  
Anil Kumar Singh ◽  
Abhijeet Kumar

Among the major class of heterocycles, the N-heterocycles, such as pyrazoles, are scaffolds of vast medicinal values. Various drugs and other biologically active molecules are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous, antimicrobial and various others. For instance, arylpyrazoles are present as core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil. The present review will be highlighting the significant therapeutic importance of pyrazole derivatives developed in the last few years.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document