scholarly journals Effects of Current Provisional Restoration Materials on the Viability of Fibroblasts

2009 ◽  
Vol 03 (02) ◽  
pp. 114-119 ◽  
Author(s):  
Mustafa Ulker ◽  
H. Esra Ulker ◽  
Mustafa Zortuk ◽  
Mehmet Bulbul ◽  
Ali Riza Tuncdemir ◽  
...  

ABSTRACTObjectives: The aim of the present study was to evaluate the cytotoxic effects of three different provisional restoration materials on fibroblasts. Two bis-acrylic based [Tempofit Duomix (Detax), Protemp 3 Garant (3M ESPE)] and one urethan dimethacrylate [Revotek LC (GC Corporation)] based provisional restoration materials used.Methods: Materials were prepared according to the manufacturers’ instructions in standard teflon disks (2×5mm) and four samples were extracted in 7 ml of Basal Medium Eagle with 10% new born calf serum and 100 mg/ml penicillin/streptomycin for 24 hours. The L929 fibroblast cells were plate (25.000 cells/ml) in well plates, and maintained in a CO2 incubator at 37°C for 24h. After 24 hours, the incubation medium was replaced by the immersed medium in which the samples were stored and the L929 fibroblasts were incubated in contact with eluates for 24 hours at 37°C for 24h. The fibroblast cell viability was analyzed by measuring the mitochondrial activity with the methyltetrazolium test (MTT). Twelve well used for each specimen and experiment repeated for two times. The data was statistically analyzed by Mann-Whitney U tests.Results: The results showed that, Revotek LC and Protemp 3 Garant were not cytotoxic for fibroblast cells when compared to control group (P>.05). However, Tempofit duomix was cytotoxic for L929 fibroblasts when compared to control group and other tested materials (P%.05).Conclusions: Taking into consideration the limitations of an in vitro study, our study indicate that provisional restoration materials might have cytotoxic effects on fibroblasts and should be selected carefully for clinical applications. (Eur J Dent 2009;3:114-119)

2020 ◽  
Vol 5 (2) ◽  
pp. 196-199
Author(s):  
Wardiansyah ◽  
Rachmat Hidayat ◽  
Msy Rulan Adnindya

A B S T R A C TIntroduction. A CO 2 incubator is an essential tool for the initiation of theproliferation of primary culture cells or cell lines. In principle, this tool works bykeeping the sample cell line at an optimum temperature of 37 o C and 5% carbondioxide supply. The ability of the CO 2 incubator to maintain temperature and supplyof 5% carbon dioxide are essential points in the development of the CO 2 incubator.This study is an attempt to convince the potential of Sriwijaya CO 2 Incubator inmaintaining the proliferation ability of cultured cells in an in vitro study. Methods.This study is an experimental pre-post test that explores the percentage of viabilityof primary culture cells (fibroblasts) before and after incubation in CO 2 incubators.The object of this study was fibroblast cells obtained from the prepuce of patientswho performed circumcision. Results. Fibroblast cell proliferation in CO 2 incubatorsshows an increase in the number of fibroblast proliferation which can be seen withthe increasing number of cells visualized by inverted microscopy. Conclusion.Sriwijaya CO 2 incubator has the potential to be used in in vitro research to triggerthe growth and proliferation of fibroblast cells.


Author(s):  
Mulumoodi Rama Sowmya ◽  
P. Ajitha ◽  
S. Pradeep

The aim of the study is to evaluate comparatively the cytotoxicity of diclofenac sodium and calcium hydroxide on L929 fibroblasts. L929 fibroblast cells were cultured and grown on Dulbecco modified Eagle’s medium. Intracanal medicaments tested were Diclofenac sodium, 5.0, 7.5, 10.0 mM/ml) and calcium hydroxide. The human fibroblast cell lines cultured in Dulbecco Modified Eagle’s medium were used as control group. Cytotoxicity was evaluated by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The results showed that there was a significant difference in cell viability as compared with the control group (P<0.05). There was no significant difference in the group treated with diclofenac sodium and calcium hydroxide (1.0 mM/ml). However, diclofenac sodium at concentration more than 5 mM/ml was found to be cytotoxic. The study concludes that diclofenac sodium is cytotoxic at 5 mM/ml and above. Therefore, further studies are recommended to establish the antimicrobial efficacy of the medicament. Within the limitations of the study, Diclofenac sodium at concentration more than 5mM/ml was found to be cytotoxic for the cells. The inhibitory concentration (IC50) of Diclofenac sodium at which the cells were viable was found to be 5.2 mM/ml. Further studies should be done to establish the antimicrobial efficacy of the medicament at these concentrations.


Author(s):  
Ekayanti M. Kaiin ◽  
Ita Djuwita

The aim of this study was to examine the potency of fibroblast cells transdifferentiated to neuron cells in vitro. Newborn rat neuron conditioned medium (NBRN CM) was collected from neuron cells cultured with mDMEM without serum for 48 hours. Fibroblast cells werecollected from fetal rat muscle treated with trypsin. Fibroblast cells were culture with 3 kind of culture medium: mDMEM + 0.01 mM β-mercaptoethanol; mDMEM + 50% NBRN-CM and mDMEM + 0.01 mM β-mercaptoethanol + 50% NBRN CM . As control, cells was culturedwith mDMEM +10% newborn calf serum (NBCS). The addition of NBRN CM into culture medium resulted in 12.97% newborn cells in fibroblastculture medium passage I. Newborn rat neuron conditioned medium in fibroblast culture medium resulted 12.97% neuron cells at passage 1. Thepercentage was increased (14.60%) when β- mercaptoethanol added into medium. The same result was found at passage 3 (12.67%; 13.17%). Itshowed that fibroblast cells has potency to transdifferentiated into neuron cells when cultured with NBRN CM. Further research is needed toknow the fibroblast transdifferentiation potency.Key words: fibroblast, transdifferentiation, conditioned medium, neuron cells, in vitro 


Author(s):  
Arda Ozdiler ◽  
suleyman dayan ◽  
Burc Gencel ◽  
Gulbahar Isık-Ozkol

This in vitro study evaluated the influence of taper angles on the internal conical connections of implant systems and of the application of chlorhexidine gel as an antibacterial agent or a polyvinyl siloxane (PVS) sealant on the reverse torque values of abutment screws after dynamic loading. The current study tested four implant systems with different taper angles (5.4°, 12°, 45°, and 60°). Specimens were divided into three groups: control (neither chlorhexidine gel filled nor silicone sealed), 2% chlorhexidine gel-filled or silicone-sealed group, and group subjected to a dynamic load of 50 N at 1 Hz for 500,000 cycles prior to reverse torque measurements. Quantitative positive correlation was observed between the taper angle degree and the percentage of tightening torque loss. However, this correlation was significant only for the 60° connection groups except in the group in which a sealant was applied ( p = 0.013 for the control group, p = 0.007 for the chlorhexidine group). Percentages of decrease in the torque values of the specimens with silicone sealant application were significantly higher compared with both the control and chlorhexidine groups ( p = 0.001, p = 0.002, p = 0.001, and p = 0.002, respectively, according to the increasing taper angles); the percentage of decrease in torque values due to chlorhexidine application was statistically insignificant when compared with the control group. The application of gel-form chlorhexidine as an antibacterial agent does not significantly affect the stability of the implant–abutment connection under dynamic loads. PVS sealants may cause screw loosening under functional loads.


Author(s):  
Rathika Rai ◽  
M. A. Easwaran ◽  
K. T. Dhivya

Aim: To evaluate the surface detail reproduction of dental stone this is immersed in different disinfectant solution and studied under stereomicroscope. Methodology: Total number of 30 specimens of dental stone (Type III) were made with measurements of 1.5cm diameter and 1cm height .This samples are divided in to 3 groups group A,B,C. were A is immersed in Distilled water which was taken as control group ;B is immersed in 2% Glutaraldehyde and C is immersed in 5%sodium hypochlorite. Each specimen were immersed in the disinfectant solution for 15 minutes and dried under room temperature for 24 hrs. After 24 hrs each specimens are studied under stereomicroscope for surface details. Result: The results showed no significant difference in the surface irregularities and porosities for a group 1 and group 2 except group 3 which showed significant increase in the porosities, surface irregularities and erosions after disinfection with 5% NaHOCl by immersion method. Conclusion: The surface detail reproduction capacity of die stone was adversely affected when 5% Sodium hypochlorite was used as disinfectant solution when compare d to control group and 2% Glutaraldehyde


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 705
Author(s):  
Asmaa M. El-Kady ◽  
Iman A. M. Abdel-Rahman ◽  
Samer S. Fouad ◽  
Khaled S. Allemailem ◽  
Taghrid Istivan ◽  
...  

Giardiasis is a major diarrheal disease affecting approximately 2.5 million children annually in developing countries. Several studies have reported the resistance of Giardia lamblia (G. lamblia) to multiple drugs. Therefore, identifying an effective drug for giardiasis is a necessity. This study examined the antiparasitic effect of Punica granatum (pomegranate) and evaluated its therapeutic efficacy in rats infected with G. lamblia. In vitro study showed high efficacy of pomegranate peel ethanolic extract in killing G. lamblia cysts as demonstrated by eosin vital staining. We showed that treating infected rats with pomegranate extract resulted in a marked reduction in the mean number of G. lamblia cysts and trophozoites in feces and intestine respectively. Interestingly, the number of G. lamblia trophozoites and cysts were significantly lower in the pomegranate extract-treated group compared to the metronidazole-positive control group. Moreover, pomegranate extract treatment significantly induced nitric oxide (NO) and reduced serum IL-6 and TNF-α, compared to infected untreated rats. Histological and scanning electron microscopy (SEM) examination of the jejunum and duodenum of pomegranate extract-treated animals confirmed the antiparasitic effect of the extract, and demonstrated the restoration of villi structure with reduction of villi atrophy, decreased infiltration of lymphocytes, and protection of intestinal cells from apoptotic cell death. In conclusion, our data show that the pomegranate peel extract is effective in controlling G. lamblia infections, which suggests that it could be a viable treatment option for giardiasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Philipp Körner ◽  
Luca Georgis ◽  
Daniel B. Wiedemeier ◽  
Thomas Attin ◽  
Florian J. Wegehaupt

Abstract Background This in-vitro-study aimed to evaluate the potential of different fluoride gels to prevent gastroesophageal reflux induced erosive tooth wear. Methods Surface baseline profiles of a total of 50 bovine enamel specimens [randomly assigned to five groups (G1–5)] were recorded. All specimens were positioned in a custom made artificial oral cavity and perfused with artificial saliva (0.5 ml/min). Reflux was simulated 11 times a day during 12 h by adding HCl (pH 3.0) for 30 s (flow rate 2 ml/min). During the remaining 12 h (overnight), specimens were stored in artificial saliva and brushed twice a day (morning and evening) with a toothbrush and toothpaste slurry (15 brushing strokes). While specimens in the control group (G1) did not receive any further treatment, specimens in G2–5 were coated with different fluoride gels [Elmex Gelée (G2); Paro Amin Fluor Gelée (G3); Paro Fluor Gelée Natriumfluorid (G4); Sensodyne ProSchmelz Fluorid Gelée (G5)] in the evening for 30 s. After 20 days, surface profiles were recorded again and enamel loss was determined by comparing them with the baseline profiles. The results were statistically analysed using one-way analysis of variance (ANOVA) followed by Tukey`s HSD post-hoc test. Results The overall highest mean wear of enamel (9.88 ± 1.73 µm) was observed in the control group (G1), where no fluoride gel was applied. It was significantly higher (p < 0.001) compared to all other groups. G2 (5.03 ± 1.43 µm), G3 (5.47 ± 0.63 µm, p = 0.918) and G4 (5.14 ± 0.82 µm, p > 0.999) showed the overall best protection from hydrochloric acid induced erosion. Enamel wear in G5 (6.64 ± 0.86 µm) was significantly higher compared to G2 (p = 0.028) and G4 (p = 0.047). Conclusions After 20 days of daily application, all investigated fluoride gels are able to significantly reduce gastroesophageal reflux induced loss of enamel.


2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Sofia Stromeyer ◽  
Daniel Wiedemeier ◽  
Albert Mehl ◽  
Andreas Ender

The purpose of this in vitro study was to compare the time efficiency of digital chairside and labside workflows with a conventional workflow for single-unit restorations. The time efficiency in this specific sense was defined as the time, which has to be spent in a dental office by a dental professional performing the relevant steps. A model with interchangeable teeth on position 36 was created. These teeth were differently prepared, responding to several clinical situations to perform single-unit restorations. Different manufacturing techniques were used: For the digital workflows, CEREC Omnicam (CER) and Trios 3 (TN/TI) were used. The conventional workflow, using a dual-arch tray impression technique, served as the control group. For the labside workflow (_L) and the conventional impression procedure (CO), the time necessary for the impressions and temporary restorations was recorded and served as operating time. The chairside workflow time was divided by the time for the entire workflow (_C) including scan, design, milling and finishing the milled restoration, and in the actual working time (_CW) leaving out the chairside milling of the restoration. Labside workflow time ranged from 9 min 27 s (CER_L) to 12 min 41 s (TI_L). Entire chairside time ranged from 43 min 35 s (CER_C) to 58 min 43 s (TI_C). Pure chairside working time ranged from 15 min 21 s (CER_CW) to 23 min 17 s (TI_CW). Conventional workflow time was 10 min 39 s (CO) on average. The digital labside workflow and the conventional workflow require a similar amount of time. The digital chairside workflow is more time consuming.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 525
Author(s):  
Laerte Marlon Conceição dos Santos ◽  
Eduardo Santos da Silva ◽  
Fabricia Oliveira Oliveira ◽  
Leticia de Alencar Pereira Rodrigues ◽  
Paulo Roberto Freitas Neves ◽  
...  

O3 dissolved in water (or ozonized water) has been considered a potent antimicrobial agent, and this study aimed to test this through microbiological and in vitro assays. The stability of O3 was accessed following modifications of the physicochemical parameters of water, such as the temperature and pH, with or without buffering. Three concentrations of O3 (0.4, 0.6, and 0.8 ppm) dissolved in water were tested against different microorganisms, and an analysis of the cytotoxic effects was also conducted using the human ear fibroblast cell line (Hfib). Under the physicochemical conditions of 4 °C and pH 5, O3 remained the most stable and concentrated compared to pH 7 and water at 25 °C. Exposure to ozonized water resulted in high mortality rates for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Scanning electron micrograph images indicate that the effects on osmotic stability due to cell wall lysis might be one of the killing mechanisms of ozonized water. The biocidal agent was biocompatible and presented no cytotoxic effect against Hfib cells. Therefore, due to its cytocompatibility and biocidal action, ozonized water can be considered a viable alternative for microbial control, being possible, for example, its use in disinfection processes.


Sign in / Sign up

Export Citation Format

Share Document