The net energy value of artificially dried subterranean clover harvested before flowering

1969 ◽  
Vol 20 (2) ◽  
pp. 365 ◽  
Author(s):  
Graham N McC

Subterranean clover (Trifolium subterraneum L. cv. Clare) was harvested before flower emergence and dried rapidly without heating. Each of four adult sheep was given the dried clover at rates of 200, 600, 1000, and 1400 g/day in four successive fortnights and was finally fed ad libitum for 1 month. Energy, nitrogen, and carbon balances and body weight changes were measured. The fasting energy losses of the sheep were determined at the end of the experiment. The hay contained approximately 27% crude protein, 14% crude fibre, and 3% lignin (dry matter basis) and was eaten avidly by the sheep. Voluntary consumption ranged from 1400 to 2100 g dry matter/day, and maximum balances were 2080 kcal and 17 g nitrogen/day. Digestibility of energy was 78% at the lowest level of feeding and 74% at the highest. Cell wall and cell contents were respectively 74 and 82% digestible. Energy losses in methane were unusually low (7–11% of digestible energy) whereas losses in urine were unusually high (12–21%). The net result was that metabolizable energy was a lower fraction of digestible energy than for most forages, e.g, it was c. 77% at maintenance instead of the normal 82%. Net availability of metabolizable energy was 84% between fasting and half maintenance, 69% between fasting and maintenance, and 54% above maintenance. The value of this clover per gram was in keeping with its chemical composition and digestibility; its exceptional value as a feed was due to the large amounts of digestible energy which the sheep took in when fed ad libitum.

2001 ◽  
Vol 41 (2) ◽  
pp. 169 ◽  
Author(s):  
Y. J. Ru ◽  
J. A. Fortune

The nutritive value of 26 cultivars of dry, mature subterranean clover was evaluated at Shenton Park, Perth, Western Australia. The cultivars were divided into 3 maturity groups according to flowering time and each cultivar was sown in blocks comprising 4 replicates. The plots were grazed by sheep at 2-week intervals during the growing season. Dry mature plant material and soil were sampled in summer to examine the effect of grazing and cultivar on seed yield and nutritive value of feed residues. Cultivars heavily grazed in spring had a low herbage mass. There was no difference in seed yield and seed weight between heavily and lightly grazed cultivars. Dry matter digestibility and mineral content of dry residues was inconsistent for the 2 grazing treatments. The dry matter digestibility of dry, mature subterranean clover ranged from 40 to 56%, with a wide range of crude fibre, nitrogen and mineral content for the 26 cultivars. While most minerals in the dry residues were above the requirement for sheep, 7 cultivars had a zinc content less than the maintenance requirement for sheep. There was an imbalance for all cultivars in calcium: phosphorus with a range of 4–10: 1. Concurrent estimates on the yield and composition of seed indicated that seed can be resource of minerals for grazing animals in summer. Most cultivars had a seed yield over 100 g/m2 with that of 9 cultivars being over 130 g/m2. Seed was rich in nitrogen, sodium, phosphorus, potassium, magnesium, zinc and copper, and poor in sodium, calcium and manganese. However, there were no cultivars with an appropriate ratio of calcium and phosphorus. The imbalance in nitrogen and sulfur was a result of high nitrogen content with the ratio ranging from 19: 1 to 29: 1.


1967 ◽  
Vol 18 (1) ◽  
pp. 137 ◽  
Author(s):  
N McCGraham

Energy and nitrogen balance experiments with three subtropical forages, a legume and two grasses, are reported. Each forage was given to four sheep at several levels of feeding. One of the forages had a low nitrogen content (4% crude protein) and was supplemented with urea and molasses containing 7 g nitrogen and 56 kcal/day. This caused voluntary consumption to increase by 50% and digestibility of all chemical constituents to increase by 6–12 units. Utilization of metabolizable energy for maintenance also improved by approximately 10%. Digestible energy (42–62%) was predicted quite accurately from chemical composition by means of published equations which refer to forages grown in temperate climates. Metabolizable energy was close to 82% of digestible energy, as found with non-tropical forages. Net availability of metabolizable energy for maintenance ranged from a very low 60% to 80%. It was predicted more accurately from percentage metabolizable energy than from digestible crude fibre: the reverse applied to net availability for production (40–50%).


1967 ◽  
Vol 18 (3) ◽  
pp. 467 ◽  
Author(s):  
N McCGraham

Wether sheep were fed at intervals of 3 hr, 24 hr, and 4 days, and their energy utilization studied at several levels of feeding. The diet consisted of ground and pelleted lucerne containing 19% crude protein and 28% crude fibre. Digestibility was a few units lower when feeding was less frequent; crude protein and fibrous constituents were affected most. The relation between methane production and digestible energy was the same for daily as for 3-hourly feeding, but methane production was depressed by feeding every fourth day only. Metabolizable energy was a slightly greater proportion of digestible energy when feeding was infrequent. A larger fraction of metabolizable energy was dissipated as heat when feeding frequency decreased. This was attributed to the cost of alternating between energy storage and oxidation of reserves: activity differences were not a cause. Overall, the net energy value of the food decreased as frequency of feeding decreased. Prediction from chemical composition or digestibility was not reliable. Measurement of hour by hour changes in metabolism indicated that there was an intense phase of fermentation and lipogenesis immediately after feeding. With 3-hourly or daily feeding, the oxygen consumption, carbon dioxide production, and methane production increased respectively by 0.7, 2.5, and 0.3 l/hr/100 g food eaten in the first hour: with the highest level of feeding, these represent increases up to 2.4-fold and an R.Q. of 1.15. With feeding every fourth day the responses were very much less, indicating depressed rumen activity; blood urea levels were also relatively low.


1964 ◽  
Vol 15 (6) ◽  
pp. 974 ◽  
Author(s):  
N McCGraham

Balances of energy, carbon, and nitrogen were measured with fresh herbage cut at 28 days' regrowth, and with hay made from it. Measurements were made on four wether sheep at fasting and at four levels of feeding. The herbage contained paspalum grass and white clover in proportions ranging from 0.6 : 1 to 1.2 : 1, with dry matter between 11 and 17%. It contained (dry matter basis) : 10% ash, 3% soluble sugars, 25% cellulose, 23% crude protein, and 9% lignin; crude fibre was 22% and nitrogen-free extractives 42%. The hay had the same composition. Digestibility of organic matter was 75% for the fresh material and 73% for the hay; digestible energy values were 73 and 70% respectively. The difference between fresh herbage and hay was due entirely to a decrease in the digestibility of protein, from 82% to 73%, in drying. Efficiency of utilization of digested protein was not affected. Digestibility of both materials decreased by 2 to 4 units between the lowest and highest feeding levels. One other difference was found, viz. the ratio methane production/kcal digestible energy was 1–2% greater with the hay. Metabolizable energy was 82–84% of digestible energy for both materials. Heat production bore a linear relation to metabolizable energy above maintenance. Net availability of metabolizable energy was 75% between fasting and maintenance, and 52% above maintenance, for both the fresh and dry food. These quantities were predictable to within 8% from metabolizable energy or fibre digestibility; the normally used starch equivalent factors underestimated the correct values by some 25%.


1985 ◽  
Vol 25 (4) ◽  
pp. 783 ◽  
Author(s):  
DE Margan ◽  
NM Graham ◽  
TW Searle

Chopped lucerne hay (Medicago sativa) and a stem fraction derived from it were fed to two adult and two immature wethers ad libitum and at a level near maintenance. Energy, nitrogen, and carbon balances were measured during feeding and fasting. The hay contained 17% crude protein and 46% cell wall constituents (dry matter basis) and the stem, which was 53% of the total, contained 10% crude protein and 64% cell wall. Voluntary dry matter consumption rates of the hay (per kg 3/4) were 103 and 145 g/day by the adults and immatures, respectively; the corresponding values for the stem were 73 and 100 g/day. Maximum daily energy balances were 290-3 16 kJ/kg3/4 for the hay and approximately maintenance for the stem. With both ad libitum and restricted feeding, energy digestibility was higher for the hay (56- 63%) than for the stem fraction (45-51%). The metabolizable fraction of digestible energy was 78% at the low and 82% at the high level of feeding and tended to be greater with the stem than with the hay. At the lower feed intake, metabolizable energy was about 10 and 8 MJ/kg organic matter for whole lucerne and stem respectively. Net availability of metabolizable energy was 64 and 49% for maintenance and gain on the hay, compared with 53 and 34% on the stem. As estimated by difference, the energy values of leaf were: digestible energy, 76%; metabolizable energy, 77% of digestible energy or 12.4 MJ/kg organic matter; net availability of metabolizable energy, 78% for maintenance and 60% for gain. All these figures are for the adult sheep; the immature animals gave values that were lower to various degrees. Consideration of the present results together with published data for other samples of lucerne suggests that the use of equations based on study of grasses to predict the energy values of lucerne is likely to introduce significant bias. Equations for this limited set of data on lucerne are given, gross energy being related to crude protein content, metabolizable energy to crude fibre and net availability of metabolizable energy to metabolizable energy content.


1979 ◽  
Vol 29 (2) ◽  
pp. 245-255 ◽  
Author(s):  
D. J. Thomson ◽  
S. B. Cammell

ABSTRACTA primary growth crop of perennial ryegrass (cv. S24), containing 17% crude protein and 9·9 MJ metabolizable energy/kg dry matter, was artificially dried, ground through a 3·0 mm screen and pelleted either without further treatment (C), or after the application of formaldehyde (T) at a rate of 1 g/100 g crude protein. The C and T diets were each fed to 20 lambs for 77 days. Diets C and T were given ad libitum and at three lower planes of nutrition. Similar amounts of dry matter, nitrogen and digestible energy were consumed at each of the four planes of nutrition by lambs fed diets C and T. Carcass energy, fat and protein retention, and total body energy retention were measured by the comparative slaughter technique and did not differ between the diets (P> 0·05). Metabolizable energy intake was calculated from digestible energy intake using the factor 0·81. The efficiency of utilization of the metabolizable energy for growth and fattening (kf) and the net energy value were calculated by linear regression analysis from the total body energy retention, the calculated metabolizable energy intake and dry-matter intake data scaled to M0·75. They did not differ between the diets (P > 0·05), and were 0·370 (C) and 0·431 (T) for kf, and 2·09 (C) and 1·97 MJ/kg dry matter (T) for net energy.


2019 ◽  
Vol 97 (7) ◽  
pp. 3056-3070 ◽  
Author(s):  
Emily A Petzel ◽  
Evan C Titgemeyer ◽  
Alexander J Smart ◽  
Kristin E Hales ◽  
Andrew P Foote ◽  
...  

AbstractTwo experiments were conducted to measure rates of ruminal disappearance, and energy and nutrient availability and N balance among cows fed corn husks, leaves, or stalks. Ruminal disappearance was estimated after incubation of polyester bags containing husks, leaves or stalks in 2 separate ruminally cannulated cows in a completely randomized design. Organic matter (OM) that initially disappeared was greatest for stalks and least for husks and leaves (P < 0.01), but amounts of NDF that initially disappeared was greatest for husks, intermediate for stalks, and least for leaves (P < 0.01). Amounts of DM and OM that slowly disappeared were greatest in husks, intermediate in leaves, and least in stalks (P < 0.01). However, amounts of NDF that slowly disappeared were greatest in leaves, intermediate in husks, and least in stalks (P < 0.01). Rate of DM and OM disappearance was greater for leaves, intermediate for husks and least for stalks, but rate of NDF disappearance was greatest for stalks, intermediate for leaves, and least for husks (P < 0.01). Energy and nutrient availability in husks, leaves, or stalks were measured by feeding ruminally cannulated cows husk-, leaf-, or stalk-based diets in a replicated Latin square. Digestible energy lost as methane was less (P = 0.02) when cows were fed leaves in comparison to husks or stalks, and metabolizable energy (Mcal/kg DM) was greater (P = 0.03) when cows were fed husks and leaves compared with stalks. Heat production (Mcal/d) was not different (P = 0.74) between husks, leaves, or stalks; however, amounts of heat produced as a proportion of digestible energy intake were less (P = 0.05) among cows fed leaves in comparison to stalks or husks. Subsequently, there was a tendency (P = 0.06) for net energy available for maintenance from leaves (1.42 Mcal/kg DM) to be greater than stalks (0.91 Mcal/kg DM), and husks (1.30 Mcal/kg DM) were intermediate. Nitrogen balance was greater when cows were fed leaves, intermediate for husks, and least for stalks (P = 0.01). Total tract digestion of NDF was greater (P < 0.01) for husks and leaves compared with stalks. Husks had greater (P = 0.04) OM digestibility in comparison to stalks, and leaves were intermediate. Apparently, greater production of methane from husks in comparison to leaves limited amounts of energy available for maintenance from husks even though total-tract nutrient digestion was greatest when cows were fed husks or leaves.


1972 ◽  
Vol 79 (1) ◽  
pp. 99-103 ◽  
Author(s):  
A. M. Raven

SUMMARYA 6 x 6 Latin Square balance experiment was carried out using six Friesian steers, each of which initially weighed about 304 kg. The six treatments studied were an all-hay diet and five other diets containing 20,40,60,80 and 100 % of rolled barley fortified with mineral and vitamin supplements, accompanied by correspondingly reduced proportions of hay. Each diet was fed at an estimated maintenance level of feeding.The progressive increase in the proportion of concentrate gave a significantly linear increase (P < 0·001) in both digestible and calculated metabolizable energy. The actual increase in digestible energy was from 2·62Mcal/kg dry matter (59·3% of the gross energy) on the all-hay treatment to 3·42 Mcal/kg dry matter (79·5% of the gross energy) on the all-concentrate treatment. Use of the determined digestible energy values for the all-hay and fortified barley diets to calculate the digestible energy of the four mixed diets gave results in reasonably good agreement with the determined values, the maximum difference being 0·12 Mcal/kg dry matter, which represented 3·83 % of the determined value. The losses of energy in the urine expressed as percentages of the gross energy of the diets showed a small but significantly linear decrease (P < 0·01) with increase in proportion of barley in the diet. The molar proportions of steamvolatile acids in samples of rumen fluid taken from two animals on each treatment indicated that increase in the proportion of concentrate was associated with tendencies for increase in acetic acid, decrease in propionic acid and little change in butyric acid. The mean digestibility of the organic matter was 62·6 % on the all-hay treatment and 81·8 % on the all concentrate treatment. The progressive increase in the proportion of concentrate gave a significantly linear increase (P < 0·001) in digestibility of the organic matter. Although intakes of nitrogen decreased with increase in the proportion of concentrate due to a decrease in the amount of dry matter fed, the weights of nitrogen retained were well maintained and when expressed as percentages of intake showed a significantly linear increase (P < 0·01).


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


1970 ◽  
Vol 12 (1) ◽  
pp. 23-36 ◽  
Author(s):  
T. T. Treacher

SUMMARY1. Scottish Half-bred ewes carrying twin foetuses were fed individually to make live-weight gains in the last six weeks of pregnancy of (1) 20%, (2) 10% and (3) 0% of their live weight in week 14 of pregnancy. In lactation the ewes were fed ad libitum. The lambs were removed 12 to 16 hr after parturition and the ewes were machine-milked twice daily for the first six weeks of lactation.2. Total birth weights per ewe of twin lambs from the treatments were (1) 10·10 kg, (2) 9·44 kg and (3) 8·18 kg and differed significantly.3. The level and pattern of voluntary intake in lactation did not differ significantly between the treatments. Total dry-matter intakes in the six weeks of lactation were (1) 121·9 kg (2) 105·9 kg and (3) 109·5 kg.4. The pregnancy treatments affected the level of milk production and the shape of lactation curves. The total yields in the first six weeks of lactation were (1) 58·8 kg, (2) 43·5 kg and (3) 26·9 kg. Higher contents of fat and protein and the lower content of lactose in the milk from treatment-3 ewes on days 1 and 3 of lactation indicated a slower onset of lactation in these ewes. Between days 7 and 35 of lactation the contents of fat and SNF were lowest on treatment 3 but the differences were not significant.5. The live-weight changes in lactation, which were in inverse order to the gains in late pregnancy, were (1) 3·4 kg, (2) 5·5 kg and (3) 9·5 kg.


Sign in / Sign up

Export Citation Format

Share Document