scholarly journals Calcium : magnesium ratio affects environmental stress sensitivity in the serpentine-endemic Alyssum inflatum (Brassicaceae)

2015 ◽  
Vol 63 (2) ◽  
pp. 39 ◽  
Author(s):  
Rasoul Ghasemi ◽  
Zohreh Zare Chavoshi ◽  
Robert S. Boyd ◽  
Nishanta Rajakaruna

Plants endemic to serpentine soils are adapted to harsh environmental conditions typical of those soils, particularly, low (<1) calcium (Ca) : magnesium (Mg) ratios. We compared survival of two perennial Alyssum species native to Iran under experimental manipulations of Ca : Mg ratio, including when Ca : Mg ratio was varied under conditions of high ammonium concentration and heat stress. Alyssum inflatum is a serpentine endemic capable of nickel (Ni) hyperaccumulation, whereas A. lanceolatum is found on non-serpentine soils and is not known to hyperaccumulate Ni. We grew plants of both species under four Ca : Mg ratios (0.4, 2, 20, 40) and tested survival when plants were exposed to elevated ammonium levels (0, 1 and 4 mM) and heat stress (control conditions vs a 5-h 36°C treatment daily for 5 days). Alyssum lanceolatum was more tolerant of Ca : Mg ratio variation (100% survival in all treatments), whereas A. inflatum survival was maximum at Ca : Mg = 2, reduced at Ca : Mg = 0.4, and very low for Ca : Mg ratios of 20 and 40. Alyssum lanceolatum also tolerated ammonium and heat stress, whereas survival of A. inflatum declined at higher Ca : Mg ratios when subjected to both stresses. We conclude that at higher Ca : Mg ratios, the serpentine endemic has reduced tolerance for these environmental stresses and may be more susceptible to human-driven climate change-associated stressors than the non-serpentine species.

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 867 ◽  
Author(s):  
Aleena Joy ◽  
Frank R. Dunshea ◽  
Brian J. Leury ◽  
Iain J. Clarke ◽  
Kristy DiGiacomo ◽  
...  

Climate change is a major global threat to the sustainability of livestock systems. Climatic factors such as ambient temperature, relative humidity, direct and indirect solar radiation and wind speed influence feed and water availability, fodder quality and disease occurrence, with production being most efficient in optimal environmental conditions. Among these climatic variables, ambient temperature fluctuations have the most impact on livestock production and animal welfare. Continuous exposure of the animals to heat stress compromises growth, milk and meat production and reproduction. The capacity of an animal to mitigate effects of increased environmental temperature, without progressing into stress response, differs within and between species. Comparatively, small ruminants are better adapted to hot environments than large ruminants and have better ability to survive, produce and reproduce in harsh climatic regions. Nevertheless, the physiological and behavioral changes in response to hot environments affect small ruminant production. It has been found that tropical breeds are more adaptive to hot climates than high-producing temperate breeds. The growing body of knowledge on the negative impact of heat stress on small ruminant production and welfare will assist in the development of suitable strategies to mitigate heat stress. Selection of thermotolerant breeds, through identification of genetic traits for adaption to extreme environmental conditions (high temperature, feed scarcity, water scarcity), is a viable strategy to combat climate change and minimize the impact on small ruminant production and welfare. This review highlights such adaption within and among different breeds of small ruminants challenged by heat stress.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Valentina Tsartsianidou ◽  
Enrique Sánchez-Molano ◽  
Vanessa Varvara Kapsona ◽  
Zoitsa Basdagianni ◽  
Dimitrios Chatziplis ◽  
...  

Abstract Background The management of farm animal genetic resources and the adaptation of animals to climate change will probably have major effects on the long-term sustainability of the livestock sector. Genomic data harbour useful relevant information that needs to be harnessed for effectively managing genetic resources. In this paper, we report the genome characterization of the highly productive Mediterranean Chios dairy sheep and focus on genetic diversity measures related with local adaptation and selection and the genetic architecture of animal resilience to weather fluctuations as a novel adaptative trait linked to climate change. Results We detected runs of homozygosity (ROH) and heterozygosity (ROHet) that revealed multiple highly homozygous and heterozygous hotspots across the Chios sheep genome. A particularly highly homozygous region was identified on chromosome 13 as a candidate of directional genetic selection associated with milk traits, which includes annotated genes that were previously shown to be linked to local adaptation to harsh environmental conditions. Favourable heterozygosity related with a potentially protective role against livestock diseases and enhanced overall fitness was revealed in heterozygous-rich regions on sheep chromosomes 3, 10, 13 and 19. Furthermore, genomic analyses were conducted on sheep resilience phenotypes that display changes in milk production in response to weather variation. Sheep resilience to heat stress was a significantly heritable trait (h2 = 0.26) and genetically antagonistic to milk production. Genome-wide association and regional heritability mapping analyses revealed novel genomic markers and regions on chromosome 5 that were significantly associated with sheep resilience to climate change. Subsequently, an annotation analysis detected a set of genes on chromosome 5 that were associated with olfactory receptor complexes that could participate in heat stress mitigation through changes in respiration rate and respiratory evaporation. Other genes were grouped in previously reported biological processes relevant to livestock heat dissipation, including stress and immune response. Conclusions Our results may contribute to the optimal management of sheep genetic resources and inform modern selective breeding programmes that aim at mitigating future environmental challenges towards sustainable farming, while better balancing animal adaptation and productivity. Our results are directly relevant to the studied breed and the respective environmental conditions; however, the methodology may be extended to other livestock species of interest.


2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 7-7
Author(s):  
Betty R McConn ◽  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Jacob M Maskal ◽  
Brianna N Gaskill ◽  
...  

Abstract Pregnant sows, especially during late-gestation, may be susceptible to heat stress due to increased metabolic heat production and body mass. Therefore, the study objective was to determine the thermoregulatory and physiological responses of sows exposed to increasing ambient temperature (TA) at 3 reproductive stages. In 3 repetitions, 27 multiparous sows (parity 3.22±0.89) were individually housed and had jugular catheters placed 5.0±1.0 d prior to the experiment. To differentiate between reproductive stages, sows were categorized as open (not pregnant, n=9), mid-gestation (59.7±9.6 days pregnant, n=9), or late-gestation (99.0±4.8 days pregnant, n=9). During the experiment, sows were exposed to 6 consecutive 1 h periods of increasing TA (period 1, 14.39±2.14°C; period 2, 16.20±1.39°C; period 3, 22.09±1.87°C; period 4, 26.34±1.39°C; period 5, 30.56±0.81°C; period 6, 35.07±0.96°C), with 1 h transition phases in between each period. Respiration rate (RR), heart rate (HR), skin temperature, and vaginal temperature (TV) were measured every 20 min and the mean was calculated for each period. At the end of each period, blood gases, leukocytes, and red blood cell counts were measured. Overall, RR and HR were greater (P≤0.04; 45.6% and 12.9%, respectively) in late-gestation versus mid-gestation sows. Compared to mid-gestation and open sows, TV tended to be greater (P=0.06) during period 4 (0.18°C and 0.29°C, respectively) and period 5 (0.14°C and 0.18°C, respectively) in late-gestation sows. Blood O2 increased (P&lt; 0.01; 18.1%) for all sows with advancing period, regardless of reproductive stage. Late-gestation sows had reduced (P=0.02; 16.1%) blood CO2 compared to mid-gestation sows, regardless of period. In summary, late-gestation sows appear to be more sensitive to increasing TA as indicated by increased RR, HR, TV, and blood O2, and reduced blood CO2 when compared to mid-gestation or open sows. This change in O2 and CO2, due to increasing RR and heat stress sensitivity of late-gestation sows, may suggest an alteration to the acid-base balance, leading to respiratory alkalosis.


2021 ◽  
pp. 102998
Author(s):  
Bianca Vilela Pires ◽  
Nedenia Bonvino Stafuzza ◽  
Luara Afonso de Freitas ◽  
Maria Eugênia Zerlotti Mercadante ◽  
Ester Silveira Ramos ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1357
Author(s):  
Ewelina A. Klupczyńska ◽  
Tomasz A. Pawłowski

Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1494
Author(s):  
Sha Jiang ◽  
Fei-Fei Yan ◽  
Jia-Ying Hu ◽  
Ahmed Mohammed ◽  
Heng-Wei Cheng

The elevation of ambient temperature beyond the thermoneutral zone leads to heat stress, which is a growing health and welfare issue for homeothermic animals aiming to maintain relatively constant reproducibility and survivability. Particularly, global warming over the past decades has resulted in more hot days with more intense, frequent, and long-lasting heat waves, resulting in a global surge in animals suffering from heat stress. Heat stress causes pathophysiological changes in animals, increasing stress sensitivity and immunosuppression, consequently leading to increased intestinal permeability (leaky gut) and related neuroinflammation. Probiotics, as well as prebiotics and synbiotics, have been used to prevent or reduce stress-induced negative effects on physiological and behavioral homeostasis in humans and various animals. The current data indicate dietary supplementation with a Bacillus subtilis-based probiotic has similar functions in poultry. This review highlights the recent findings on the effects of the probiotic Bacillus subtilis on skeletal health of broiler chickens exposed to heat stress. It provides insights to aid in the development of practical strategies for improving health and performance in poultry.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 892
Author(s):  
Valda Gudynaitė-Franckevičienė ◽  
Alfas Pliūra

To have a cleaner environment, good well-being, and improve the health of citizens it is necessary to expand green urban and suburban areas using productive and adapted material of tree species. The quality of urban greenery, resistance to negative climate change factors and pollution, as well as efficiency of short-rotation forestry in suburban areas, depends primarily on the selection of hybrids and clones, suitable for the local environmental conditions. We postulate that ecogenetic response, phenotypic plasticity, and genotypic variation of hybrid poplars (Populus L.) grown in plantations are affected not only by the peculiarities of hybrids and clones, but also by environmental conditions of their vegetative propagation. The aim of the present study was to estimate growth and biochemical responses, the phenotypic plasticity, genotypic variation of adaptive traits, and genetically regulated adaptability of Populus hybrids in field trials which may be predisposed by the simulated contrasting temperature conditions at their vegetative propagation phase. The research was performed with the 20 cultivars and experimental clones of one intraspecific cross and four different interspecific hybrids of poplars propagated under six contrasting temperature regimes in phytotron. The results suggest that certain environmental conditions during vegetative propagation not only have a short-term effect on tree viability and growth, but also can help to adapt to climate change conditions and grow successfully in the long-term. It was found that tree growth and biochemical traits (the chlorophyll A and B, pigments content and the chlorophyll A/B ratio) of hybrid poplar clones grown in field trials, as well as their traits’ genetic parameters, were affected by the rooting-growing conditions during vegetative propagation phase. Hybrids P. balsamifera × P. trichocarpa, and P. trichocarpa × P. trichocarpa have shown the most substantial changes of biochemical traits across vegetative propagation treatments in field trial. Rooting-growing conditions during vegetative propagation had also an impact on coefficients of genotypic variation and heritability in hybrid poplar clones when grown in field trials.


Sign in / Sign up

Export Citation Format

Share Document