Growing-season rainfall, ear number and the water-limited potential yield of wheat in south-western Australia

2010 ◽  
Vol 61 (4) ◽  
pp. 296 ◽  
Author(s):  
Heping Zhang ◽  
Neil C. Turner ◽  
Narelle Simpson ◽  
Michael L. Poole

Knowledge of the contribution of ear number per unit area, grains per ear, and kernel weight to grain yield is important in understanding the limits to the water-limited potential yield of wheat in rain-fed agricultural regions. This paper analyses the relationships between grain yield, yield components and growing-season rainfall using data from the low-, medium-, and high-rainfall zones of the cropping region of south-western Australia. The aim of the paper is to quantify the contribution of ear number, grains per ear and kernel weight to grain yield and define the yield components of wheat required to achieve its water-limited yield. The grain yield of wheat was closely related to the number of grains per unit area (r2 = 0.90) and ears/m2 (r2 = 0.75), but poorly correlated with kernel weight (r2 = 0.30) and grains/ear (r2 = 0.09). The number of grains per unit area was highly related (r2 = 0.75) to the number of ears per unit area across the rainfall zones of the cropping region, and strongly correlated (r2 = 0.88–0.94) to the spike dry weight at anthesis. The highest yields achieved in the field were close to the water-limited potential estimated using the French and Schultz method. To achieve this water-limited potential, wheat requires 1 ear per m2 for every mm of growing-season rainfall (r2 = 0.92). We conclude that the number of ears per unit area is the most important factor required in order to achieve high yields of up to a yield of 6 t/ha in wheat in rain-fed south-western Australia.

Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P < 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 703-707 ◽  
Author(s):  
Amadou Diarra ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted to investigate methods of controlling red rice (Oryza sativaL. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2or with CaO2plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.


2004 ◽  
Vol 84 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
William E. May ◽  
Ramona M. Mohr ◽  
Guy P. Lafond ◽  
Adrian M. Johnston ◽  
F. Craig Stevenson

The proportion of oat (Avena sativa L.) being used for race horses and human consumption has increased over the past 15 yr. The objective of this study was to evaluate the effects of N, seeding date and cultivar on grain yield components, grain yield and grain quality of oat under a direct seeding system. Four N rates, three seeding dates and two cultivars were tested at Indian Head, Melfort, and Canora, SK, and Brandon, MB. Yield was more responsive to increasing N rates from 15 and 80 kg ha-1 when oat was seeded in early May versus early June. Panicles plant-1 was the yield component that accounted for most of the yield increase achieved from increasing rates of N, while kernel weight was the yield component that decreased as the rate of N increased. Physical seed quality decreased (plump seed decreased and thin seed increased) with delayed seeding and greater N fertilizer rates. Nitrogen fertilizer and seeding date had a much larger effect on the quality of CDC Pacer than AC Assiniboia. Combining early seeding, appropriate N fertility and well-adapted cultivars should increase the likelihood of optimizing oat yield and quality necessary for high-value markets. Key words: Avena sativa L., yield components, test weight, lodging, plump seed, thin seed


2011 ◽  
Vol 48 (No. 5) ◽  
pp. 230-235
Author(s):  
M. Sabo ◽  
M. Bede ◽  
Ž.U. Hardi

Variability of grain yield components of some new winter wheat genotypes (e.g. Lara, Lenta, Kruna, Fiesta, Perla, and one line of AG-45) was examined. The analysis of grain yield components of these genotypes and the line was undertaken in a two-year research (1997/1998 and 1998/1999) at two different locations. Significant differences among genotypes, locations and research years were established. In the first experimental year (1997/1998) there was a high positive correlation between nearly all components of the grain yield. The most significant correlation was found between the grain number per spike and grain yield. In the second experimental year (1998/1999) the components did not show statistically significant correlation with the grain yield. It seems that the grain yield of examined genotypes depended significantly on the grain number per spike, grain mass per spike, and agroecological conditions during the vegetation period, whereby the potential yield was determined by the interaction among genotypes, location and production year. The biggest differences among examined genotypes of winter wheat were found in the stem height and spike length.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jian Yang ◽  
Yanjie Zhou ◽  
Weiguo Hu ◽  
Yu’e Zhang ◽  
Yong Zhou ◽  
...  

Abstract Background Ecological environments shape plant architecture and alter the growing season, which provides the basis for wheat genetic improvement. Therefore, understanding the genetic basis of grain yield and yield-related traits in specific ecological environments is important. Results A structured panel of 96 elite wheat cultivars grown in the High-yield zone of Henan province in China was genotyped using an Illumina iSelect 90 K SNP assay. Selection pressure derived from ecological environments of mountain front and plain region provided the initial impetus for population divergence. This determined the dominant traits in two subpopulations (spike number and spike percentage were dominance in subpopulation 2:1; thousand-kernel weight, grain filling rate (GFR), maturity date (MD), and fertility period (FP) were dominance in subpopulation 2:2), which was also consistent with their inheritance from the donor parents. Genome wide association studies identified 107 significant SNPs for 12 yield-related traits and 10 regions were pleiotropic to multiple traits. Especially, GY was co-located with MD/FP, GFR and HD at QTL-ple5A, QTL-ple7A.1 and QTL-ple7B.1 region. Further selective sweep analysis revealled that regions under selection were around QTLs for these traits. Especially, grain yield (GY) is positively correlated with MD/FP and they were co-located at the VRN-1A locus. Besides, a selective sweep signal was detected at VRN-1B locus which was only significance to MD/FP. Conclusions The results indicated that extensive differential in allele frequency driven by ecological selection has shaped plant architecture and growing season during yield improvement. The QTLs for yield and yield components detected in this study probably be selectively applied in molecular breeding.


1974 ◽  
Vol 83 (1) ◽  
pp. 117-124 ◽  
Author(s):  
H. M. Ishag ◽  
M. B. Taha

SUMMARYThe effect of sowing date and nitrogen on tillering patterns, survival and contribution of reproductive tillers to grain yield of standard and Mexican wheat cultivars were studied for two seasons.Maximum number of tillers/plant, 3·2–4·5, was observed after 40 and 27 days from sowing for 1970–1 and 1971–2 respectively. The number of ears/plant was 1·4 at the end of the growing season. Varieties differed in tillering, and LRN10 and Giza 155 produced more reproductive tillers than Falchetto and Mexipak. Nitrogen application increased tillering efficiency, i.e. ratio of fertile to total tillers produced. Only 26% of tillers appearing in the axil of the first true leaf (T1) and 10% of tillers in the axil of the second true leaf (T2) survived to produce ears. The high mortality of tillers was attributed to high air temperature prevailing during the growth period (33 °C by day; 18 °C by night). Eared tillers did not die and were self supporting because of the photosynthesis by the ear.Grain weight/tiller was positively correlated with tiller dry weight at heading, r= 0·76–0·96. Main shoots contributed about 81% of the total grain yield and 19% came from T1 and T2 tillers.


1985 ◽  
Vol 12 (6) ◽  
pp. 641 ◽  
Author(s):  
JS Pate ◽  
NE Casson ◽  
J Rullo ◽  
J Kuo

The growth, longevity, mineral relationships and reproductive biology of 18 species of fire ephemerals were examined in sclerophyllous shrubland, located mainly within the Jurien : Badgingarra region of the Northern Sandplains of the kwongan of SW. Australia. Ten of the species were monocarpic, completing their life cycle within the 6-8 month winter growing season after a summer or autumn fire. The remaining species were polycarpic, commencing reproduction in their second season and surviving and reproducing for a further two to eight seasons (depending on species). Detailed study was made of growth and dry matter allocation in the dioecious, sexually dimorphic, polycarpic species Tersonia brevipes (Gyrostemonaceae). Monocarpic species tended to produce smaller seeds, and exhibited greater seed output per unit biomass and higher harvest indices for dry matter and minerals than polycarpic species. Certain monocarpic species showed great plasticity in final dry weight, e.g. a 2700-fold difference between largest and smallest individuals in a sample of 250 plants of Stipa elegantissima (Poaceae), and a 180-fold range in a similarly sized sample of Macarthuria apetala (Aizoaceae). The fire ephemerals studied generally exhibited faster seedling growth rates, greater concentrations of P and N (but not of Ca, Mg and K) in seedling dry matter, but usually lesser concentrations of P and N (but not of Ca, Mg and K) in seed dry matter than in cohabiting obligate seeder or sprouter species with potential life spans exceeding 15 years. The above-mentioned features of fire ephemerals are suggested to be of special adaptive significance within the context of exploitation of transiently non-limiting habitat resources immediately following fire.


2016 ◽  
Vol 69 (3) ◽  
Author(s):  
Elżbieta Harasim ◽  
Marian Wesołowski ◽  
Cezary Kwiatkowski ◽  
Paweł Harasim ◽  
Mariola Staniak ◽  
...  

<p>The aim of the present study was to determine the effect of different growth regulator rates and nitrogen fertilization levels on yield components and to evaluate their influence on winter wheat productivity. A field experiment with winter wheat ‘Muza’ was conducted at the Czesławice Experimental Farm, belonging to the University of Life Sciences in Lublin, Poland over the period 2004–2007. In this experiment, the effect of the studied factors on yield and its components was primarily dependent on weather conditions during the study period.</p><p>An increase in nitrogen rate from 100 to 150 kg ha<sup>−1</sup> in 2005 and 2007 had a significant effect on the increase in grain yield per unit area. In 2005, the grain yield rose through increased spike density (by 6.3%) and a higher number of grains per spike (by 1.6%). The 1000-grain weight decreased the grain yield per unit area (by 0.04 t ha<sup>−1</sup>). In 2007, the higher yield of wheat fertilized with nitrogen at a rate of 150 kg N ha<sup>−1</sup> was positively affected by all the three yield components. The statistical analysis of the results showed that the winter wheat grain yields were also significantly affected by the retardant rates applied depending on the year.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 777
Author(s):  
Nguyen Sao Mai ◽  
Dao Duy Hanh ◽  
Mai Nakashima ◽  
Kotaro Kumamoto ◽  
Nguyen Thi Thu Thuy ◽  
...  

Unraveling the complex genetic bases and mechanisms underlying salt tolerance is of great importance for developing salt-tolerant varieties. In this study, we evaluated 42 chromosome segment substitution lines (CSSLs) carrying chromosome segments from IR64 on the genetic background of Koshihikari under salt stress. Two CSSLs, SL2007 and SL2038, produced higher plant dry weight and grain yield than did Koshihikari under the stress condition. These CSSLs also showed lower Na+ and Cl− accumulation in the leaf and whole plant at the full heading stage, which might be related to the higher grain yield and yield components. To understand the genetic control of its grain yield and yield components, a SL2007/Koshihikari F2 population was generated for quantitative trait locus (QTL) analysis. Six QTLs for grain yield and yield-related traits were detected on chromosome 2. Using near-isogenic lines (NILs) from a SL2007/Koshihikari F5 population, qSTGY2.2 was delimited to a 2.5 Mb region and novel qSTPN2 was delimited to a 0.6 Mb region. We also detected a novel QTL, qSTGF2, for grain filling, which was considered an important contributor to grain yield under salt stress in this CSSL. Our results provide insights into mechanisms conferring grain yield under salinity stress and new genetic resources for cloning and breeding.


Sign in / Sign up

Export Citation Format

Share Document