Combined foliar application of nutrients and 5-aminolevulinic acid (ALA) improved drought tolerance in Leymus chinensis by modulating its morpho-physiological characteristics

2017 ◽  
Vol 68 (5) ◽  
pp. 474 ◽  
Author(s):  
Ji-Xuan Song ◽  
Shakeel Ahmad Anjum ◽  
Xue-Feng Zong ◽  
Rong Yan ◽  
Ling Wang ◽  
...  

Water deficit is an environmental constraint restricting plant growth and productivity, and is further worsened by reduced soil fertility. Plant growth-regulating substances ameliorate damaging effects of abiotic stresses, and their efficacy is improved by application of adequate nutrients. An experiment was undertaken to investigate the influence of foliar-applied nutrients (nitrogen, phosphorus, potassium: NPK) and 5-aminolevulinic acid (ALA) alone and in combination on morpho-physiological indices of the perennial grass Leymus chinensis (Trin.) Tzvel under drought and well-watered conditions. Drought stress caused a reduction in growth and photosynthetic pigments while increasing the accumulation of malondialdehyde (MDA) and osmolytes compared with well-watered conditions. However, application of NPK and ALA improved plant height, fresh and dry weights, and chlorophyll content. Production of soluble proteins and sugars, proline content, and antioxidant enzyme activities (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase) were increased and MDA accumulation was lowered by application of NPK and ALA relative to the control (no application). Combined application of NPK and ALA proved more advantageous than NPK or ALA alone in exerting ameliorative effect on L. chinensis under drought-stressed conditions. The results suggest that combined application of NPK and ALA improves the growth and development of L. chinensis by modulating physiological processes and aids in sustaining drought.

2010 ◽  
Vol 32 (4) ◽  
pp. 419 ◽  
Author(s):  
Xing Teng ◽  
Lei Ba ◽  
Deli Wang ◽  
Ling Wang ◽  
Jushan Liu

Many studies indicated that saliva from herbivores might be involved in plant growth responses when plants have been grazed. However, there is currently no general agreement on whether saliva can affect plant growth. Our aims were to determine the growth response of plants to sheep saliva after defoliation under diverse environmental conditions (different sward structures), and whether the effect of saliva is influenced by time (duration) after its application. We conducted field experiments with clipping treatments and the application of sheep saliva to the damaged parts of tillers to simulate sheep grazing on the perennial grass Leymus chinensis (Trin.) Tzvelev during the early growing seasons. Results demonstrated that clipping with saliva application significantly increased tiller numbers 8 weeks after treatments in comparison with clipping alone. A key finding is that the effect of sheep saliva on plant growth was short-lived. Clipping with saliva application increased leaf weight in the second week, while clipping alone had no effect. Moreover, clipping with saliva application promoted the elongation of new leaves (not the old ones) in the first week whereas clipping alone was ineffective. Results also showed that there were no differences between clipping with saliva application and clipping alone for relative height growth rate and aboveground biomass. Therefore, we concluded that saliva application to clipping treatment would produce an additional effect compared to clipping alone for the plant and the positive effects are time dependent. The additional effects primarily embodied in the individual level of plant, such as the changes of leaf weight and leaf length. Beyond the level, the effects of saliva only produced many more tiller numbers rather than the accumulation of aboveground biomass.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Tian Tian ◽  
Basharat Ali ◽  
Yebo Qin ◽  
Zaffar Malik ◽  
Rafaqat A. Gill ◽  
...  

Lead (Pb) is a widely spread pollutant and leads to diverse morphological and structural changes in the plants. In this study, alleviating role of 5-aminolevulinic acid (ALA) in oilseed rape (Brassica napusL.) was investigated with or without foliar application of ALA (25 mg L−1) in hydroponic environment under different Pb levels (0, 100, and 400 µM). Outcomes stated that plant morphology and photosynthetic attributes were reduced under the application of Pb alone. However, ALA application significantly increased the plant growth and photosynthetic parameters under Pb toxicity. Moreover, ALA also lowered the Pb concentration in shoots and roots under Pb toxicity. The microscopic studies depicted that exogenously applied ALA ameliorated the Pb stress and significantly improved the cell ultrastructures. After application of ALA under Pb stress, mesophyll cell had well-developed nucleus and chloroplast having a number of starch granules. Moreover, micrographs illustrated that root tip cell contained well-developed nucleus, a number of mitochondria, and golgi bodies. These results proposed that under 15-day Pb-induced stress, ALA improved the plant growth, chlorophyll content, photosynthetic parameters, and ultrastructural modifications in leaf mesophyll and root tip cells of theB. napusplants.


2021 ◽  
Vol 50 (1) ◽  
pp. 113-117
Author(s):  
Xuefeng Zong ◽  
Jun Lv ◽  
Shakeel Ahmad Anjum ◽  
Xiao Wu ◽  
Chao Wu ◽  
...  

An experiment was conducted to elucidate the negative impacts of drought on growth and hormones of Leymus chinensis. Results showed that plant height, dry weight and zeatin riboside contents declined under drought condition over the control. Whereas indole acetic acid, gibberellic acid and abscisic acid contents were augmented under stress environment over the normal conditions. Exogenous application of NPK and/or 5-aminolevulinic acid (ALA) depicted more pronouncing response to alleviate adversities of drought. Conclusively, foliar application of 'Urea (1%) + KH2PO4 (1%) + ALA (50 mg/l)' produced better results under drought stress on the evaluated parameters.


2019 ◽  
Vol 37 ◽  
Author(s):  
Z. XUE-FENG ◽  
L.V. JUN ◽  
M. SHAHID ◽  
S.A. ANJUM ◽  
L. NA-JIA ◽  
...  

ABSTRACT: Abiotic stresses and poor biomass accumulation are chief constraints to accomplish potential yield in Leymus chinensis. An experiment was conducted to improve biomass and correlation of biomass accumulating attributes with photosynthetic pigments, osmotic substances and antioxidants under foliar application of different plant growth substances. The experiment was conducted at inner Mongolia Xilinguole, China, using a Randomized Complete Block Design and 5 replications. The treatments consisted of water (control); BA5 = application of BA (6-benzylaminopurine) at 5 mg L-1; BA25 = application of BA at 25 mg L-1; BA50 = application of BA at 50 mg L-1; BR0.02 = application of BR (brassinosteroid) at 0.02 g L-1; BR0.2 = application of BR at 0.2 mg L 1; BR2 = application of BR at 2 mg L-1; GA10 = application of GA (gibberellic acid) at 10 mg L-1; GA50 = application of GA at 50 mg L-1 and GA100 = application of GA at 100 mg L-1. Application of all plant growth substances significantly improved biomass, osmotic adjustments, photosynthetic pigments and antioxidant activities compared to control. However, the most promising results were found with 0.2 mg L-1 BR. The highest chlorophyll a/b, glutathione and ascorbate peroxidase activities were recorded with 25 mg L-1 BA. Conclusively, 25 mg L-1 BA, 0.2 mg L-1 BR and 10 mg L-1 GA exhibited more promising results than other concentrations for the evaluated attributes.


2021 ◽  
Vol 49 (3) ◽  
pp. 12417
Author(s):  
Parichart SILALERT ◽  
Wattana PATTANAGUL

Melatonin (N-acetyl-5-methoxytryptamine) plays an essential role in abiotic stress in plants, but its mechanism in drought tolerance is unclear. To better understand the protective roles of melatonin against drought stress, we investigated the effect of foliar application with exogenous melatonin on plant growth, physiological responses, and antioxidant enzyme activities in rice seedlings under drought stress. Rice seedlings were grown for 21 days, and foliar sprayed with 0, 50, 100, 200, and 300 µM melatonin. The control plant was watered daily, while the others were subjected to drought stress by withholding water for seven days. The results showed that drought stress significantly reduced plant growth, relative water content, and chlorophyll content. Electrolyte leakage, malondialdehyde (MDA) content and hydrogen peroxide (H2O2) were also negatively affected by drought stress. Application of melatonin alleviated the effects of drought stress by increasing plant growth, improving relative water content and chlorophyll content, and decreasing electrolyte leakage, MDA, and H2O2. Foliar application with melatonin also increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX). In addition, melatonin also enhanced proline and total soluble sugar accumulation during drought stress. It is, therefore, suggested that foliar application with 100 µM melatonin was the most effective for reducing the adverse effects of drought stress in rice plants.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 908
Author(s):  
Faisal Zulfiqar ◽  
Jianjun Chen ◽  
Patrick M. Finnegan ◽  
Muhammad Nafees ◽  
Adnan Younis ◽  
...  

Alpinia zerumbet is an important medicinal and ornamental plant species. Drought stress is a major concern for sustainable horticulture crop production under changing climate scenarios. Trehalose (Tre) and 5-aminolevulinic acid (ALA) are osmoprotectants that play important roles in mitigating plant stresses. In this study, the effects of foliar application of 25 mM Tre or 10 mg L−1 ALA on biochemical and physiological parameters of A. zerumbet seedlings and their growth were evaluated under well-watered and drought-stressed (65% of field capacity) conditions. Drought caused reductions in physiological parameters and plant growth. These decreases were accompanied by increases in leaf free proline and glycine betaine concentrations and peroxidase activities. Foliar application of Tre or ALA remediated physiological and biochemical parameters and plant growth. Overall, foliar application of ALA or Tre proved to be beneficial for mitigating drought stress in A. zerumbet.


2011 ◽  
Vol 39 (1) ◽  
pp. 41 ◽  
Author(s):  
Feng XU ◽  
Shuiyuan CHENG ◽  
Jun ZHU ◽  
Weiwei ZHANG ◽  
Yan WANG

The flavonoid content determines the quality of Ginkgo biloba that can be increased by using of plant growth regulators. The objective of study was to observe the effect of 5-aminolevulinic acid (ALA), a key precursor in the biosynthesis of porphyrins and a new plant growth regulator, on photosynthetic rate, chlorophyll and soluble sugar content, flavonoid accumulation, and flavonoid enzyme activity in G. biloba leaves. The ginkgo seedlings were grown in greenhouse conditions under low levels (10 and 100 mg l-1) of foliar application of ALA. Photosynthetic rates of leaves increased significantly at day 4 in response to both ALA concentrations and remained elevated as compared to control for further 12 days. Chlorophyll and soluble sugar contents were significantly increased by day 4 and continued to increase by day 16; however, Chl a/b ratio remained unchanged. Total polyphenols, flavonoids, and anthocyanins, phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and chalcone isomerase (CHI) activities were increased from day 4 to 16 after ALA treatment. The increase in chlorophyll and soluble sugar contents, and activities of flavonoid enzymes (PAL, CHS and CHI) were likely to be closely associated with improvement of the accumulation of total polyphenols, flavonoids, anthocyanins and advance of leaf quality by ALA treatment. Foliar treatment with a low concentration of ALA therefore, might provide a useful means of improving pharmacological properties of G. biloba leaves.


2021 ◽  
Author(s):  
Saidi Rumanzi Mbaraka ◽  
Jean Claude Abayisenga ◽  
Christian Nkurunziza ◽  
Francois Xavier Rucamumihigo ◽  
Sylvestre Habimana ◽  
...  

Abstract Purpose Benefits of silicon to plant growth and yield in higher plants has been explored recently. This study was conducted to assess the effects combined application of foliar application of Orthosilicic Acid (OSA) with basal NPK fertilizer on growth and yield of rice. Methods The study was conducted in Ntende site at Rwagitima marshland, Gatsibo district in the Eastern province of Rwanda. The field experiment was laid in randomized complete block design with three replications across in two cropping seasons in 2019/2020. Two recommended doses of fertilizer (RDF); 100% RDF (200 kgha− 1 NPK and 100 kgha− 1 Urea) and 75% RDF (150 kgha− 1 NPK and 75 kgha− 1 Urea) were used in combination with different doses of silixol orthosilicic acid (OSA). The Si fertilizers were applied in liquid form at panicle initiation and grain filling stages. Results Combined application of OSA with RDF produced better growth attributes (plant height, number of tillers, root length, flag leaf length and width) compared with using RDF only. Similarly, OSA application showed higher yield components, number of panicles, panicle weight, grain weight per panicle and 1000-grain weight. Highest yield of 5.81 t/ha which equates to 24% increase was obtained when 100% RDF + 4ml/l OSA was applied. Conclusion Rice fertilization with Si helps to stimulate plant growth, yield attributes and yield. Therefore, potential of Si could further be explored among rice farmers in Rwanda.


2018 ◽  
Vol 8 ◽  
pp. 1415-1423 ◽  
Author(s):  
Afnan Freije

The effect of foliar ALA application on the internal ALA concentration in tomato plants grown in soil containing high levels of NaCl  was investigated. Six week old plants were treated with 100, 50, and 25 mmol/L NaCl on a weekly basis and they were simultaneously treated with 5-ALA at a concentration of 5%  by foliar spray. The effect of foliar ALA application on plant growth, chlorophyll contents and internal ALA concentration was studied. The internal ALA shoot concentrations ranged between 27.50±2.12 and 34.35±1.48 µg g-1 dry weight with no significant difference (p<0.05) recorded between plants treated with NaCl alone and those treated with both NaCl and ALA. The concentrations of chlorophyll a and b were elevated only in tomato plants treated with NaCl and ALA, whereas their levels decreased in plants treated with NaCl only. An adverse significant effect (p<0.05) of salinity stress was recorded on plants length, number of leaves, shoot and root fresh and dry weight. However, no significant difference  (p<0.05) was observed in plants treated with  NaCl alone with those treated with  NaCl plus ALA in comparison to the control. The results of the present study suggested that foliar ALA treatment had no effect on the Na and Cl uptake, the internal ALA concentration, and had no role in adverting the effects of salinity on plant growth. The present study has proven that foliar ALA is directly used by the plant for the synthesis of chlorophyll in order to increase the photosynthetic rate and thus to help tomato plants to survive the salinity stress.


Sign in / Sign up

Export Citation Format

Share Document