Nitrogen fertiliser alleviates the disorder straighthead in Australian rice

2006 ◽  
Vol 46 (8) ◽  
pp. 1077 ◽  
Author(s):  
B. W. Dunn ◽  
G. D. Batten ◽  
T. S. Dunn ◽  
R. Subasinghe ◽  
R. L. Williams

Straighthead is a ‘physiological’ disorder of rice, the symptoms being floret sterility, deformed florets and panicles and reduced grain yield. Straighthead in rice is difficult to investigate because of its unpredictable occurrence under field conditions. An experiment was conducted in south-eastern Australia in 1996 to investigate the effect of rate and timing of N fertilisation on growth and yield of rice. The presence of straighthead at this location gave a unique opportunity to study the influence of crop N status. This paper reports the influence of N application on straighthead symptoms during this experiment. A significant reduction of straighthead occurred with higher rates of N application. Application of 250 kg N/ha pre-flood, improved plant growth and vigour with subsequent increased uptake and accumulation of S, P, K, Mg, Cu, Mn and Zn in the plant at panicle initiation. The reduction of straighthead at high nitrogen rates may be due to improved uptake of several essential nutrients, and Cu may be a critical nutrient. This study and earlier observations have shown the application of optimal levels of pre-flood nitrogen to achieve grain yields greater than 10 t/ha may reduce straighthead severity in the Australian rice-growing environment. The results in this paper are not presented as recommendations to growers but a contribution to the currently limited literature on straighthead in Australia.

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Aung Zaw Htwe ◽  
Seinn Moh Moh ◽  
Khin Myat Soe ◽  
Kyi Moe ◽  
Takeo Yamakawa

The use of biofertilizers is important for sustainable agriculture, and the use of nodule bacteria and endophytic actinomycetes is an attractive way to enhance plant growth and yield. This study tested the effects of a biofertilizer produced from Bradyrhizobium strains and Streptomyces griseoflavus on leguminous, cereal, and vegetable crops. Nitrogen fixation was measured using the acetylene reduction assay. Under N-limited or N-supplemented conditions, the biofertilizer significantly promoted the shoot and root growth of mung bean, cowpea, and soybean compared with the control. Therefore, the biofertilizer used in this study was effective in mung bean, cowpea, and soybean regardless of N application. In this study, significant increments in plant growth, nodulation, nitrogen fixation, nitrogen, phosphorus, and potassium (NPK) uptake, and seed yield were found in mung beans and soybeans. Therefore, Bradyrhizobium japonicum SAY3-7 plus Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus are effective bacteria that can be used together as biofertilizer for the production of economically important leguminous crops, especially soybean and mung bean. The biofertilizer produced from Bradyrhizobium and S. griseoflavus P4 will be useful for both soybean and mung bean production.


2017 ◽  
Vol 35 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Roberto BF Branco ◽  
Sally F Blat ◽  
Tais GS Gimenes ◽  
Rodrigo HD Nowaki ◽  
Humberto S Araújo ◽  
...  

ABSTRACT The production of horticultural crops in no-tillage and in rotation with cover crops reduces the dependency in nitrogen fertilizer, due to increased soil organic matter and by biological fixation performed by legumes. Thus, the aim of this work was to study rates of nitrogen fertilization and cover crops in the agronomic performance of tomato and broccoli grown under no-tillage. The experiment was conducted in a split plot design with four replications. Treatments consisted of cover crops, sunn hemp and millet, and four rates of nitrogen fertilization (0, 50, 100 and 200 kg/ha of nitrogen), for both the tomato and broccoli crops. All soil management was performed in no-tillage. For tomato crops we evaluated the plant growth, the nitrate concentration of sprouts and fruits and yield of commercial and non commercial fruits. For broccoli we evaluated plant growth and yield. There was an interaction effect between cover crop and nitrogen rates to tomato growth measured at 100 days after transplanting, for plant height, number of fruit bunches, dry mass of leaves and diameter of the stalk. The tomato commercial fruit number and yield showed maximum values with 137 and 134 kg/ha of N respectively, on the sunn hemp straw. The nitrate concentration of the tomato sprouts was linearly increasing with the increase of nitrogen rates, when grown on the millet straw. For broccoli production, the maximum fresh mass of commercial inflorescence was with 96 kg/ha of N, when grown on the millet straw.


Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 674
Author(s):  
Anjali Zaveri ◽  
Jacqueline Edwards ◽  
Simone Rochfort

Hull rot disease of almond (Prunus dulcis), caused by the fungus Rhizopus stolonifer, is prevalent in well maintained orchards where trees are provided plenty of water and nitrogen to increase the growth and yield. The predominantly grown variety Nonpareil is considered very susceptible to hull rot, while the pollinator variety Carmel is more resistant. Reduced nitrogen rates and restricted irrigation scheduling decreased the incidence and severity of hull rot in Californian orchards. As a part of our research, the hull composition of Australian almond fruits of Nonpareil and Carmel varieties, grown under two levels of irrigation (high and low) and two levels of nitrogen (high and low), were analysed using 1H NMR-based metabolomics. Both Nonpareil and Carmel hulls contained sugars such as glucose, sucrose, fructose and xylose, and amino acids, particularly asparagine. Variety was the major factor with Nonpareil hulls significantly higher in sugars and asparagine than Carmel. Within varieties, nitrogen influenced the relative concentrations of glucose, sucrose and asparagine. In Nonpareil, high nitrogen high water (the control) had relatively high glucose and asparagine content. High nitrogen low water increased the sucrose component, low nitrogen high water increased the glucose component and low nitrogen low water increased the sucrose and asparagine components. In Carmel, however, high nitrogen low water and low nitrogen high water increased sucrose and asparagine, and low nitrogen low water increased sucrose and glucose. Hull rot symptoms are caused by fumaric acid production by R. stolonifer growing within the hull. These changes in the hull composition under different nitrogen and water scenarios have the potential to affect the growth of R. stolonifer and its metabolite production in hull rot disease.


2014 ◽  
Vol 65 (9) ◽  
pp. 878 ◽  
Author(s):  
B. W. Dunn ◽  
T. S. Dunn ◽  
H. G. Beecher

The need for continual improvement in water productivity of rice farming has led to the development of delayed permanent (continuous) water (DPW) irrigation practice for drill-sown rice in south-eastern Australia. Current rice-growing practices have the crop flooded for most, or all, of its growing period, whereas DPW has reduced the period of flooding during the vegetative phase, resulting in significant water savings. The changed water-management practice required nitrogen (N) management practices to be investigated, because traditional N application timings and rates may no longer be suitable. Six experiments were conducted over three rice-growing seasons, 2010–11, 2011–12 and 2012–13, on two soil types in south-eastern Australia. Nitrogen applications at sowing, early tillering, mid-tillering and pre-PW were investigated at different rates and split-timing combinations. In the third season, three current commercial semi-dwarf rice varieties, Reiziq, Sherpa and Langi, were investigated for their growth and grain yield using different N treatments under DPW management. Nitrogen applied with the seed at sowing increased vegetative plant growth but did not increase grain yield, whereas N applied at early tillering had no significant impact on plant growth or grain yield. Nitrogen applied at mid-tillering often increased plant growth but did not lead to increased grain yield over treatments that received all N before PW application at 18–22 days before panicle initiation. When rice is managed under DPW, all N should be applied in one application, before the application of PW. The results from this research show that applying 100 kg N ha–1 before PW for rice grown under DPW was the best N-management option for the experimental fields. All three varieties grew and yielded well under the practice of DPW and responded similarly to N application rates and timings.


2005 ◽  
Vol 56 (11) ◽  
pp. 1151 ◽  
Author(s):  
Victor O. Sadras

The multiple factors constraining the growth, reproduction, and survival of diverse organisms are often non-additive. Research of interacting factors generally involves conceptual models that are specific for target organism, type of stress, and process. As a complement to this reductionist, bottom-up view, in this review I discuss a quantitative top-down approach to interacting stresses based on co-limitation theory. Firstly, co-limitation theory is revised. Co-limitation is operationally identified when the output response of a biological system (e.g. plant or population growth) to two or more inputs is greater than its response to each factor in isolation. The hypothesis of Bloom, Chapin, and Mooney, that plant growth is maximised when it is equally limited by all resources, is reworded in terms of co-limitation and formulated in quantitative terms, i.e. for a given intensity of aggregate stress, plant growth is proportional to degree of resource co-limitation. Emphasis is placed on the problems associated with the quantification of co-limitation. It is proposed that seasonal indices of nitrogen and water stress calculated with crop simulation models can be integrated in indices accounting for the aggregated intensity of water and nitrogen stress (SWN), the degree of water and nitrogen co-limitation (CWN), and the integrated effect of stress and co-limitation (SCWN = CWN/SWN). The expectation is that plant growth and yield should be an inverse function of stress intensity and a direct function of co-limitation, thus proportional to SCWN. Secondly, the constraints imposed by water and nitrogen availability on yield and water use efficiency of wheat crops are highlighted in case studies of low-input farming systems of south-eastern Australia. Thirdly, the concept of co-limitation is applied to the analysis of (i) grain yield responses to water–nitrogen interactions, and (ii) trade-offs between nitrogen- and water-use efficiency. In agreement with theoretical expectations, measured grain yield is found to be proportional to modelled SCWN. Productivity gains associated with intensification of cropping practices are interpreted in terms of a trade-off, whereby water-use efficiency is improved at the expense of nitrogen-use efficiency, thus leading to a higher degree of resource co-limitation.


2019 ◽  
Vol 11 (1) ◽  
pp. 1-7
Author(s):  
Ikhwani Ikhwani ◽  
Gagad R Pratiwi ◽  
Abdul Karim Makarim

There are many new rice varieties have been produced, introduced and breed at IRRI and the other National Agriculture Research Institutes that are tolerance to submergence condition to anticipate global warming and flash flooding around theworld. Among others are IR64-Sub 1, Suwarna-Sub 1, Inpara-1, Inpara-2, inpara-3 etc. However, those new varieties have not been tested widely yet, and the method of rice cultivation under submergence condition have not been adjusted, including the nutrient management.A greenhouse experiment was conducted at Muara Research Station, Bogor during 2008 dry season. The objectives of this experiment are (1) to study the effects of time of submergence and N application on plant growth and yield of  R64 and IR64-Sub 1 rice varieties; (2) to find the best nutrient management for submergence rice varieties. The experiment was conducted during 2008 dry season at greenhouse, Muara Research station, Bogor. The design of the  experiment was a Completely Randomized Factorial Design with three eplications. Factor 1 is rice variety (IR64 and IR64-Sub 1); Factor 2 is time of submergence (without submergence or control, submergence at vegetative phase (15 to 25 d.a.t), and at generative phase (35 to 45 d.a.t)). Factor 3 is N application, namely (F1) 300 kg Urea/ha 3x applications at 7 d.a.t- 30 d.a.t – 55 d.a.t; (F2) Mudball urea –300 kg Urea/ha applied once at 7 d.a.t. (F3) compost; and (F4) compost and urea; (F5) Urea and silikat.urea-N application at four time 0 d.a.t – 7 d.a.t – 30 d.a.t – 55 d.a.t (factor C). The results of experiments showed that submergence changes rice plant growth pattern (mainly tiller number and plant height), increased dry grain weight of IR64, namely 35.9 g at early vegetatif phase and 29.9 g at late vegetatif phase, while for IR64-Sub 1 32.6 g and 30.3 g at the same respective phase. Mudball urea and silicate application improved plant resistant to submergence and increase rice yield.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Sign in / Sign up

Export Citation Format

Share Document