Effects of suboptimal plant density and non-uniformity in plant spacing on grain yield of raingrown sunflower

1988 ◽  
Vol 28 (5) ◽  
pp. 617 ◽  
Author(s):  
LJ Wade ◽  
CP Norris ◽  
PA Walsh

The effects of suboptimal plant density and non-uniformity in plant spacing on grain yield of raingrown sunflower were examined using regression analysis. This involved quantifying the parabolic relationship between grain weight per plant and area per plant. A term for uniformity was added, based on the proximity of neighbouring plants within the row. Multiple regression accounted for 50% of the total variation amongst the 1071 plants analysed. The 3 constants in the regression were considered to indicate the yield potential of the crop, the proportion of space available per plant not utilised at low density, and the proportion of the most scarce resource denied to the individual plant at high density relative to an equivalent plant at even spacing. This technique permitted quantification of the levels of unevenness, and of the percentage yield reductions attributable to suboptimal plant density and to non-uniformity in plant spacing. Reductions in grain yield per unit area were mainly due to a lack of plants at low densities, and to unevenness at high densities. A technique is proposed for surveying crop establishment, and for estimating the percentage yield reductions attributable to the effects of plant density and uniformity in plant spacing over a range of crops. Further experimentation is warranted, to determine whether the percentage yield reductions found for this crop are generally applicable.

Author(s):  
Filip Vučajnk ◽  
Igor Šantavec ◽  
Darja Kocjan Ačko ◽  
Jurij Rakun ◽  
Jože Verbič ◽  
...  

Planting speed did not have significant influence on silage and grain yield of maize. By increasing the planting speed, up to 10% less seed was needed per hectare and fuel and energy use was lower for 15%. However significant increase of silage and grain yield per plant was determined by increasing planting speed. Our research using a maize vacuum planter was designed to determine the effects of higher planting speeds then usually suggested on plant spacing variability, silage yield, grain yield, and fuel, energy consumption. The planting speed was 7, 9, and 11 km/h and was carried out with an air vacuum planter. The results show that by the increase of planting speed the distance between the plants in a row, and in most cases also the plant spacing variability increased. It was noticed that by increasing planting speed plant density decreased. Despite the non-uniform spacing of plants in a row at higher planting speeds, no significant differences appeared in the silage and grain yield. This research established that at higher planting speeds significant increase of the silage yield per individual plant and of the grain yield per individual plant was achieved. The ear parameters also show that the kernel mass per individual ear, the ear mass, and the cob mass, as well as the individual kernel mass, are larger at the planting speed of 11 km/h than at the planting speed of 7 km/h. At the latter planting speed, significantly higher fuel consumption per hectare and higher energy use was achieved than at the other two planting speeds. Overall, the planting speed of 11 km/h proved to be most appropriate, despite the increased plant spacing variability.


1990 ◽  
Vol 30 (2) ◽  
pp. 251 ◽  
Author(s):  
LJ Wade

The percentage loss in grain yield for a crop of raingrown sunflower was quantified, using a multiple regression technique, for 9 combinations of plant density and uniformity in plant spacing. For each combination, partitioning loss in grain yield involved the reduction in grain yield (g/m2), the number of plants involved and the effective area of crop which those plants represented (m2). Relative to an achievable yield potential of 692 kg/ha, any reduction in grain yield was mainly due to the lack of plants at a density less than 5.00/m2 (7.4% yield reduction) and to non-uniformity in plant spacing at a density greater than 5.001m2 (5.6% yield reduction). The multiple regression technique is considered more valuable than other methods because it provides quantitative estimates of per cent loss in grain yield attributable to suboptimal plant density and non-uniformity in plant spacing. The technique should be of value in assessing the effect of poor crop establishment at a site or in evaluating improved crop establishment. A more general relationship capable of predicting per cent loss in grain yield based on data taken at the time of establishment is still required.


2013 ◽  
Vol 11 (2) ◽  
pp. 65 ◽  
Author(s):  
I.P. Wardana ◽  
A. Gania ◽  
S. Abdulrachman ◽  
P.S. Bindraban ◽  
H. Van Keulen

<p>Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use efficiency, i.e. high productivity of water, land, and labor. The objectives of the study were to investigate the effects of crop establishment method, organic matter amendment, NPK management, and water management on yield of lowland rice. Five series of experiments were conducted at Sukamandi and Kuningan Experimental Stations, West Java. The first experiment was focused on crop establishment method, i.e. plant spacing and number of seedlings per hill. The second, third, and fourth experiments were directed to study the effect of NPK and organic matter applications on rice yield. The fifth experiments was designed to evaluate the effect of water management on rice yield. Results showed that 20 cm x 20 cm plant spacing resulted in the highest grain yield for the new plant type rice varieties. Organic matter and P fertilizer application did not significantly affect grain yield, but the yield response to P fertilization tended to be stronger with organic matter amendment. Split P application did not significantly increase grain yield. The use of a scale 4 leaf color chart reading resulted in a considerable N fertilizer saving without compromising rice yield. Intermittent irrigation technique saved water up to 55% without affecting yields, resulting in a 2-3 times higher water productivity.</p>


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 230 ◽  
Author(s):  
Kristina Toderich ◽  
Elena Shuyskaya ◽  
Zulfira Rakhmankulova ◽  
Roman Bukarev ◽  
Temur Khujanazarov ◽  
...  

With continued population growth, increasing staple crop production is necessary. However, in dryland areas, this is negatively affected by various abiotic stresses, such as drought and salinity. The field screening of 10 improved genetic lines of pear millet originating from African dryland areas was conducted based on a set of agrobiological traits (i.e., germination rate, plant density, plant maturity rate, forage, and grain yields) in order to understand plant growth and its yield potential responses under saline environments. Our findings demonstrated that genotype had a significant impact on the accumulation of green biomass (64.4% based on two-way ANOVA), while salinity caused reduction in grain yield value. HHVBC Tall and IP 19586 were selected as the best-performing and high-yielding genotypes. HHVBC Tall is a dual purpose (i.e., forage and grain) line which produced high grain yields on marginal lands, with soil salinization up to electrical conductivity (EC) 6–8 dS m−1 (approximately 60–80 mM NaCl). Meanwhile, IP 19586, grown under similar conditions, showed a rapid accumulation of green biomass with a significant decrease in grain yield. Both lines were tolerant to drought and sensitive to high salinity (above 200 mM NaCl). The threshold salinity of HHVBC Tall calculated at the seedling stage was lower than that of IP 19586. Seedling viability of these lines was affected by oxidative stress and membrane peroxidation, and they had decreased chlorophyll and carotenoid biosynthesis. This study demonstrated that ionic stress is more detrimental for the accumulation of green and dry biomass, in combination with increasing the proline and malonic dialdehyde (MDA) contents of both best-performing pearl millet lines, as compared with osmotic stress.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangzhou Liu ◽  
Wanmao Liu ◽  
Yunshan Yang ◽  
Xiaoxia Guo ◽  
Guoqiang Zhang ◽  
...  

Abstract Marginal superiority is a common phenomenon in crops, and is caused by the competitiveness of individual plant for resources and crop adaptability to crowded growth conditions. In this study, in order to clarify the response of marginal superiority to maize morphology and plant-density tolerance, field experiments without water and nutrition stress were conducted at Qitai Farm in Xinjiang, China, in 2013–2014 and 2016–2019. The results showed that no more than three border rows of all the cultivars had marginal superiority under high density, about 90% of all the cultivars had no more than two border row that had marginal superiority and a significant negative correlation was observed between marginal superiority and population grain yield (first border row: y = − 2.193x + 213.9, p < 0.05; second border row: y = − 2.076x + 159.2, p < 0.01). Additionally, marginal superiority was found to have a significant positive relationship with plant density (first border row: y = 6.049x + 73.76, p < 0.01; second border row: y = 1.88x + 95.41, p < 0.05) and the average leaf angle above the ear (first border row: y = 2.306x + 103.1, p < 0.01). These results indicated that the smaller the leaf angle above the ear, the weaker the marginal superiority and the higher the grain yield. It suggests that the magnitude of marginal superiority in the border rows can be an indicator for plant-density tolerance under high density. What’s more, cultivars with small leaf angle above the ear can be selected to weaken the marginal superiority and improve grain yield under high plant density. Conversely, cultivars with a large leaf angle above the ear can be selected to achieve higher individual yield in intercropping systems with no more than four rows alternated with other crops.


1976 ◽  
Vol 66 (1) ◽  
pp. 113-123 ◽  
Author(s):  
S. Finch ◽  
G. Skinner

AbstractTo study the effects of plant density on populations of the cabbage root fly (Erioischia brassicae (Bch.) ) and the cabbage stem weevil (Ceutorhynchus quadridens (Panz.)), cauliflowers were planted in 24 concentric circles to achieve spacings of 10–90 cm at 22 plant densities (1·5–83/m2). Some plants were treated with a root drench of chlorfenvinphos. Each week female cabbage root flies laid approximately three times as many eggs per individual plant at the lowest than at the highest plant densities tested. This was equivalent to approximately 350 and 5000 eggs/m2, respectively. The numbers of cabbage root fly pupae produced ranged from 11/m2 at the lowest to 210/m2 at the highest plant density. In the absence of an insecticide, increasing the plant density considerably increased the absolute population of the pest without affecting cauliflower yield. Approximately seven times as many flies were produced per unit area of untreated mini-cauliflowers as from an equivalent area of plants growing at a conventional density. When chlorfenvinphos was not applied, damage by the cabbage stem weevil occurred in 30% and 70% of the plants grown at the lowest and highest densities, respectively.


1986 ◽  
Vol 37 (3) ◽  
pp. 219 ◽  
Author(s):  
WK Anderson

Eight spring bread wheat cultivars (Triticum aestivum L.), differing widely in their nominal yield component characteristics, were tested under rain-fed conditions for three years at sowing densities ranging from 50 to 800 seeds m-2. The objectives of the experiments were to estimate the relationship between grain yield and particular yield components, the expression of plant type (yield components) in relation to plant density, and the plant population x cultivar interaction for grain yield over a range of seasons in a given environment. The 'optimum' plant population (at maximum grain yield) varied over 30-220 plants m-2, depending on season and cultivar. In general, variation in the 'optimum' population was greater between seasons for a given cultivar than between cultivars within seasons. The relationship between grain yield and yield components was examined at the 'optimum' population rather than at an arbitrary population at which grain yield may have been suboptimal for some cultivars or seasons. Grain yields at the optimum populations for the various cultivar x season combinations were positively related to culms m-2, spikes m-2 and seeds m-2. They were not clearly related to culm mortality (%). When averaged across seasons, cultivar grain yields were positively related to harvest index, but the general relationship was not so clear when seasons and cultivars were examined individually. Spike size (seeds spike-I or spike weight) and seed size were also not clearly related to grain yield at the 'optimum' population, and it was thus postulated that the production and survival of large numbers of culms, which in turn led to large numbers of seeds per unit area, were the source of large grain yields. Some interactions were found between yield components and plant population for some cultivars that could have implications for plant breeders selecting at low plant densities. The implications for crop ideotypes of the individual plant characters at the 'optimum' population are also discussed. Interactions between cultivars and plant populations implied that some cultivars required different populations to achieve maximum yields in some seasons. There was a tendency for larger yields to be achieved from cultivar x season combinations where the optimum population was larger, which suggested that commercial seed rates should be re-examined when changes to plant types or yield levels are made.


1989 ◽  
Vol 61 (5) ◽  
pp. 387-394
Author(s):  
B. Galambosi ◽  
Y. Holm

The influence of a top-dressing of nitrogen fertilizer (calcium nitrate, CaNO3) on the individual plant height and weight, herb yield and nitrate content of dragonhead (Dracocephalum moldavica L.) was studied in 1987 in Puumala, Finland. The nitrogen doses applied ranged from 0 to 270 kg/ha. Nitrogen fertilization increased both the individual plant height and weight, the fresh and dry herb yield and the nitrate content of the plants. However, no optimum nitrogen dose could be found since the maximum was not reached in most of the cases. An exception was the herb yield (d.w.) of transplanted plants, harvested at the flowering stage, where a nitrogen dose of 70—80 kg/ha gave the highest yield. If the plants were allowed to grow a few weeks more the yield was four fold compared to the earlier harvesting. Sown plants gave a yield two times higher than the transplanted plants, but this was partly due to the greater plant density on the sown plots.


Author(s):  
O B Bello

Optimum plant population is very important in enhancing high and stable grain yield especially in quality protein maize (QPM) production. A field trial was therefore conducted to compare the performance of six hybrids (three each of QPM and normal endosperm) at three population densities using a split-plot design at the sub-station of the Lower Niger River Basin Development Authority, Oke-Oyi, in the southern Guinea savanna zone of Nigeria during the 2010 and 2011 cropping seasons. Plant population -1 densities (53,333, 66,666, and 88,888 plants ha ) constituted the main plots and the six hybrids were assigned to the subplots, replicated three times. Our results showed a differential response of maize -1 hybrids to high densities, with plant populations above 53,333 plants ha reduced grain yield, and this is more pronounced in QPM than normal endosperm hybrids. This is contrary to the results observed in many other countries. This might be that the hybrids were selected in low yield potential area at low plant densities, and hence not tolerant to plant density stress. It may also be due to low yield potential of the experimental site, which does not allow yield increases at high plant densities. Though normal endosperm hybrids 0103-11 and 0103-15 as well as QPM Dada-ba were superior for grain yield among -1 the hybrids at 53,333 plants ha , hybrid 0103-11 was most outstanding. Therefore, genetic improvement of QPM and normal endosperm hybrids for superior stress tolerance and high yield could be enhanced by selection at higher plant population densities.


1996 ◽  
Vol 23 (2) ◽  
pp. 129-133
Author(s):  
P. E. Igbokwe ◽  
N. V. K. Nkongolo

Abstract This study was conducted on a Memphis silt loam at Alcorn State University in 1992 and 1993 and investigated row-intercropping as a low-input alternative to the conventional cropping system for peanut (Arachis hypogaea L.) production in southwestern Mississippi. Extractable P and exchangeable cations were significantly (P ≤ 0.05) higher for vetiver-peanut row-intercropping in 1992. Extractable S and P were significantly (P ≤ 0.05) higher for vetiver-peanut row-intercropping and conventional peanut monocropping, respectively, in 1993. Plant height, shoot dry weight, the number of yellow nutsedge (Cyperus esculentus L.) per row, insect lesions per leaflet, and rodent diggings per row were significantly (P ≤ 0.05) higher for conventional peanut monocropping than when peanut was intercropped with vetiver grass [Vetiveria zizanioides (L.) Nash]. Peanut pod number, pod weight, seed number, and seed weight also were higher for conventional peanut monocropping. The seed mineral composition generally was not affected by cropping system and plant spacing. Peanut yield was higher for 15.2 cm within-row plant spacing compared to 10.2- and 20.3-cm spacings investigated in this study. Interaction between cropping system and plant spacing was significant for pod number, pod weight, seed number, seed weight, and seed Ca and Fe compositions in 1992, but only significant for seed number, seed weight, and seed Fe and Zn compositions in 1993.


Sign in / Sign up

Export Citation Format

Share Document