Effect of nitrogen source and soil type on inorganic nitrogen concentrations and availability in field trials with wheat

1992 ◽  
Vol 32 (2) ◽  
pp. 175 ◽  
Author(s):  
MG Mason

Thirteen trials, each with 3 nitrogen (N) sources (urea, ammonium nitrate, and ammonium sulfate) and 2 N rates (25 and 75 kg N/ha), were carried out during 1987-89, to measure the rate of disappearance of ammonium-N on different soils. Six soil categories were examined, from very acid to calcareous light soils, and from medium to heavy textured soils. Plots were planted with wheat, and at the higher rate of N, fallow plots were included to distinguish plant uptake from other processes such as nitrification and immobilisation that cause the disappearance of ammonium N. Reduction in concentration of ammonium-N was rapid on high pH, light soils (2-3 weeks at Dongara 1988), and slower with decreasing soil pH (e.g. >19 weeks at Merredin 1987). Nitrate-N concentration increased on fertiliser-treated plots at all sites, indicating that nitrification was taking place. Ammonium-N decline was slower with ammonium sulfate supplied than with urea or ammonium nitrate, consistent with its greater acidifying effect in the soil. This difference did not occur on the alkaline light soils, where reduction in concentration of ammonium-N was rapid for all sources. In 1989, the rate of decline of ammonium-N was considerably slowed because the soil surface containing the ammonium-N was dried during a very dry spring with little effective rainfall in September and October.

1989 ◽  
Vol 29 (6) ◽  
pp. 837
Author(s):  
MG Mason

Urea, ammonium sulfate and ammonium nitrate were compared as sources of nitrogen (N) for wheat grown on very acid soils at 2 sites in 1980, in the absence of lime or where lime at 2 t/ha was incorporated into the top 10 cm of soil. The plots were soil sampled each week for the first 5 weeks after sowing, and further samples were collected at 9 weeks. Wheat tops were sampled 4 times during the first 6 weeks after sowing. Soils and plants were analysed for ammonium-N and nitrate-N. Application of each fertiliser initially caused increased soil levels of ammonium-N which fell with time at both sites. Increases in nitrate-N were small and were usually not significant. At 1 site (Bunketch), and with ammonium sulfate as the N source when no lime was added, there was a slower rate of decline in ammonium-N than in the presence of lime. Fertiliser type did not result in any significant differences in ammonium and N concentrations in the soil, apart from the higher levels of nitrate-N in the ammonium nitrate treatments. At both sites and particularly at Perenjori both in the absence and presence of lime, nitrate-N concentrations in plants were higher for the treatments with N fertiliser than for the unfertilised controls. This suggests that the N applied as fertiliser ammonium is nitrified before it is taken up by the plants. At the first plant sampling at Perenjori and at the first 2 samplings at Bunketch, ammonium-N levels in the fertilised plants were higher than in the unfertilised plants, suggesting that ammonium-N was readily taken up by the plants. Plant nitrate levels were lower at Bunketch in the absence of lime, than where lime was added. Grain yields were significantly increased at both sites by N fertiliser application. The 3 fertilisers were equally effective and there was no significant response to lime. Both nitrate and ammonium-N appeared to be readily utilised by the plant.


1988 ◽  
Vol 68 (1) ◽  
pp. 63-75 ◽  
Author(s):  
LEONARD J. EATON ◽  
DAVID G. PATRIQUIN

Soil ammonium and nitrate in the top 15 cm of soil were monitored after application of ammonium nitrate and ammonium sulfate to plots at 14 PF (previously fertilized) and 12 NF (never fertilized) lowbush blueberry (Vaccinium angustifolium Ait.) stands representing a range of soil types and management histories. Overall, nitrate values in unfertilized and ammonium sulfate plots were higher at PF than at NF sites, suggesting greater nitrification at PF sites. In laboratory incubation studies, nitrification proceeded immediately in soil from a PF site, but only after a 4-wk lag in that from an adjacent NF site. Nitrification rates were low compared to that in a garden soil (pH 6.6). N-Serve inhibited nitrification in both soils. In ammonium nitrate plots, "excess" N values (N values in fertilized plots minus values in unfertilized plots) were higher for PF than for NF sites, suggesting greater immobilization, plant uptake or loss of N at NF sites. There was no evidence, in laboratory studies, of immobilization of added N by soil from either type of site. Rhizome N concentration increased significantly in response to fertilization at an NF site, but not at a PF site. Key words: Blueberry (lowbush), fertilizer and soil nitrogen


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1179
Author(s):  
Darlena Caroline da Cruz Corrêa ◽  
Abmael da Silva Cardoso ◽  
Mariane Rodrigues Ferreira ◽  
Débora Siniscalchi ◽  
Pedro Henrique de Almeida Gonçalves ◽  
...  

The reduction in ammonia (NH3) losses from volatilization has significant implications in forage production. The objective of this study was to evaluate the impact of N fertilizers (urea, ammonium nitrate, and ammonium sulfate) and four doses (0, 90, 180 and 270 kg N ha−1) on N losses by NH3 volatilization, accumulation, and forage chemical composition of Urochloa brizantha cv Marandu. Two field experiments were conducted to measure NH3 losses using semi-open chambers. The forage accumulation and chemical composition were evaluated in the third experiment; the response variables included forage accumulation, crude protein (CP), and neutral detergent fiber (NDF). Compared to urea, ammonium nitrate and ammonium sulfate reduced NH3 losses by 84% and 87% and increased total forage accumulation by 14% and 23%, respectively. Forage accumulation rate and CP increased linearly with the N levels, while NDF contents decreased linearly with the N levels. In both experiments, NH3 losses and forage characteristics were different according to the rainfall pattern and temperature variations. Our results indicate that the use of nitric and ammoniacal fertilizers and the application of fertilizer in the rainy season constitute an efficient fertilizer management strategy to increase forage yield and decrease losses from volatilization of NH3.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 469-475 ◽  
Author(s):  
W. Mack Thompson ◽  
Scott J. Nissen ◽  
Robert A. Masters

Laboratory experiments were conducted to identify adjuvants that improve absorption of imazethapyr, 2,4-D amine, and picloram by leafy spurge. Adjuvants (0.25% v/v) included crop oil concentrate (COC), methylated seed oil (MSO), nonionic surfactant (NIS), organosilicones (Silwet L-77®, Sylgard® 309, Silwet® 408), 3:1 mixtures of acetylinic diol ethoxylates (ADE40, ADE65, ADE85) with Silwet L-77, ammonium sulfate (2.5 kg ha−1), and 28% urea ammonium nitrate (UAN, 2.5% v/v). Adjuvants were combined with14C-herbicide and commercially formulated herbicide product. Leaves were harvested 2 DAT, rinsed with 10% aqueous methanol to remove surface deposits of herbicide, and dipped in 9:1 hexane:acetone to solubilize cuticular waxes. Imazethapyr absorption increased by 38 to 68% when UAN was combined with COC, NIS, or MSO. Total absorption of imazethapyr plus COC, MSO, or NIS exceeded 86% 2 DAT when UAN was added. Urea ammonium nitrate reduced the amount of imazethapyr associated with the cuticular wax by 2.0%. Imazethapyr absorption was similar on both the abaxial and adaxial leaf surface when UAN was not added; however, 12% more imazethapyr was absorbed from the abaxial leaf surface than from the adaxial leaf surface when UAN was combined with Sylgard 309. Uptake of 2,4-D ranged from 54 to 78% and was greatest with Silwet 408 and 3:1 mixture of ADE40: Silwet L-77. Picloram absorption ranged from 3 to 19%. Buffering picloram treatment solutions to pH 7 and including 2.5 kg ha-1ammonium sulfate increased picloram absorption to 37%.


HortScience ◽  
1994 ◽  
Vol 29 (3) ◽  
pp. 175-179 ◽  
Author(s):  
Randy J. Lewis ◽  
Stephen L. Love

Petiole NO3-N concentrations (PNCs) of seven potato (Solanum tuberosum L.) genotypes grown under four N treatments were studied. In 1986-88, the cultigens were planted in plots with a gradient of available N created by adding 0,140,280, or 420 kg N/ha ammonium nitrate split between preplant and periodic seasonal applications. PNCs were significantly (P ≤ 0.05) affected by year, sampling time (four times per season), N rate, and cultigen. All first- and second-order interactions were also significant (P <0.05). The relative PNC ranking among cultigens remained nearly constant across years when averaged across sampling dates and N rates. Regression-equation distinctiveness for each cultigen relating PNC to sampling time demonstrated a genotypic influence on seasonal PNC and allowed separation into four response classes. Using a data subset consisting of the 1988 trial, an optimal N rate was determined and regression equations were computed relating PNC to sampling date for each cultigen at the applied N rate nearest to the optimum. Tests for distinction separated the equations of the seven cultigens into six unique classes; `Frontier Russet' and `Ranger Russet' equations were coincident.


1990 ◽  
Vol 4 (3) ◽  
pp. 620-624 ◽  
Author(s):  
B. Clifford Gerwick ◽  
Lisa D. Tanguay ◽  
Frank G. Burroughs

The effect of urea ammonium nitrate (UAN) on the antagonism of sethoxydim, haloxyfop, or the methyl ester of haloxyfop activity by bentazon was evaluated in greenhouse and field trials on yellow and giant foxtail. Including UAN in the spray solution in the absence of bentazon did not enhance the activity of any of the three grass herbicides. However, adding UAN to sethoxydim or haloxyfop in the presence of bentazon decreased the bentazon antagonism of grass activity. Conversely, UAN increased bentazon antagonism of the activity of haloxyfop methyl ester. The differential effect of UAN was not linked to effects on spray solution pH.


2018 ◽  
Vol 34 (1) ◽  
pp. 197-211 ◽  
Author(s):  
Diogenes L. Antille

Abstract.Field trials were conducted at gated pipe surface and overhead irrigation sites established to cotton ( L.) to evaluate irrigation and fertigation management using a model-based control system. The control strategies determined the timing and volume of irrigation, and the rate of fertilizer-N to apply through fertigation. For this, nitrogen (N) was applied in-crop season using urea ammonium nitrate (UAN, 30% N solution) at a rate of 40 kg ha-1 N. At the furrows site, the uniformity of distribution of fertilizer-N applied through fertigation was satisfactory, which was achieved both at distance (600 m) and depth (0-600 mm). Applying fertilizer-N through fertigation, at the rate used in this study, showed relatively small (=8%) improvements in cotton yield, which was explained by relatively high N rates (180 kg ha-1 N) applied before planting. Given current price ratios (fertilizer-to-cotton), application of N through fertigation appears to be economical in both systems, but relative agronomic efficiencies and economic return from the fertilizer applied were lower in furrow compared with overhead (P&lt;0.05). Fertigation may be recommended when pre-season N application rates are low (e.g., &lt;100 kg ha-1 N), particularly in overhead irrigation as significantly higher efficiencies both in terms of water and N use can be achieved with this system. This would enable some of the operational constraints associated with application of N in-crop season to be overcome; thereby, reducing the need for high rates of N applied up-front. For the overhead system, there were also advantages compared with the furrow system in terms of reduced potential for N2O emissions after irrigation or fertigation. Overall, short-term (30-day period) soil emissions of N2O were approximately eight times higher in furrow compared with overhead. Emissions from non-fertigated crops were approximately two times higher in furrow compared with overhead. Emissions from the fertigated crop under the overhead system were comparable to the non-fertigated crop of the furrow system (P&gt;0.05). In both systems, fluxes were highest within five days of irrigation or fertigation, but they decreased significantly after that time as soil moisture content (water-filled pore space) and soil nitrate levels decreased due to crop uptake. Nitrous oxide fluxes were similar in furrow and overhead 15 days after the irrigation or fertigation event. Areas that warrant further investigation are presented and discussed, including the need for improved timing of fertilizer delivery during the irrigation cycle to ensure that N losses through leaching or gaseous evolution (e.g., N2O, N2) are not economically or environmentally significant. Keywords: Greenhouse gas emissions, Irrigated cotton, Nitrogen use efficiency, Urea ammonium nitrate, Water-run urea.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Rui M. A. Machado ◽  
Isabel Alves-Pereira ◽  
Yasmin Faty ◽  
Sara Perdigão ◽  
Rui Ferreira

The aim of the present study was to evaluate the effects of nitrogen source applied by fertigation to an enriched soil with organic compost on plant growth, mineral nutrition, and phytochemical contents in two successive harvests in coriander. The treatments were as follows: unfertilized soil, soil enriched with organic compost, and soil enriched with organic compost to which 60 kg N ha−1 as ammonium nitrate and as ammonium sulfate applied by fertigation were added. Ammonium nitrate addition allowed to obtain a high total fresh yield (3.6 kg m−2) with a low inorganic nitrogen input. Ammonium nitrate increased plant shoot dry weight; fresh yield; and shoot N, K, and Ca uptake in the first harvest. Ammonium nitrate relative to organic compost and to ammonium sulfate increased fresh yield by approximately 57 and 25%, respectively. However, ammonium sulfate in the first harvest greatly increased shoot total phenols, from 137 mgGAE/100 g FW in ammonium nitrate to 280.4 mgGAE/100 g FW. Coriander’s fresh yield, in the second harvest, was unaffected by nitrogen addition. However, ammonium nitrate increased shoot total phenols and FRAP activity. Overall, the shoot phytochemical accumulation in the second harvest was lower than in the first. The combined application of ammonium nitrate and organic compost is a strategy to reduce inorganic nitrogen application.


2008 ◽  
Vol 88 (5) ◽  
pp. 907-919 ◽  
Author(s):  
G. P. Lafond ◽  
S. A. Brandt ◽  
B. Irvine ◽  
W. E. May ◽  
C. B. Holzapfel

Nitrogen is the most limiting nutrient in crop production on the Canadian prairies. There is great interest in managing it more effectively for environmental and economic reasons. Our objective was to study the effectiveness of using different proportions of recommended nitrogen rates at seeding with the balance at different crop growth stages to minimize the risks of potential yield losses from in-crop nitrogen applications in spring wheat and canola. The field trials with wheat were conducted at three locations from 2003 to 2006 and at two locations for canola from 2004 to 2006. The treatments consisted of applying 100, 67, 50, 33 or 0% of the targeted N rate at seeding using urea in mid-row bands and the balance in-crop at the 1.5, 3.5 or 5.5 leaf stages in spring wheat and at the 5-6 leaf stage, bolting or start of flowering stage in canola using surface dribble band of liquid urea-ammonium nitrate. With spring wheat, applying 33% of the recommended N rate at seeding with the balance in-crop resulted in similar yields to when all the nitrogen was applied at seeding in one study while, in the other, some yield loss was observed at the 3.5 leaf stage. This indicates that a higher proportion, such as 50%, would be more appropriate. With canola, a minimum of 50% of the recommended nitrogen rate was required at seeding and the in-crop application at or before the bolting phase to give yields equivalent to when all fertilizer was applied at seeding. Consequently, applying 50% or more of the recommended N at seeding enhances the opportunity for in-crop applications of nitrogen in spring wheat and canola to better match the soil and climatic conditions. Key words: Canola, wheat, split applications, liquid urea-ammonium nitrate, grain yield, grain protein


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Thomas H. Beckett ◽  
Edward W. Stoller ◽  
Loren E. Bode

Ammonium fertilizers, petroleum oil concentrate, and nonionic surfactant were evaluated as postemergence spray additives to improve giant foxtail and volunteer corn control by 28 g ai ha−1of the ethyl ester of quizalofop or 56 g ha−1sethoxydim. Additions of 0.25% by vol nonionic surfactant or 2.5% petroleum oil concentrate improved grass control, but additions of 10% urea ammonium nitrate (28-0-0), 10% ammonium polyphosphate (10-34-0), or 0.1M ammonium sulfate (21-0-0-24S) did not consistently affect grass control. In laboratory studies with corn, greatest14C absorption from leaf-applied14C-quizalofop (8 h after treatment) was found with additions of petroleum oil concentrate (80% absorbed) or nonionic surfactant (18% absorbed), while less absorption was observed with treatments containing either no additive, urea ammonium nitrate, ammonium polyphosphate, or ammonium sulfate (8 to 13% absorbed). Surface tension and droplet size of spray solutions were affected primarily by additions of nonionic surfactant, petroleum oil concentrate, and the formulated herbicides. Solution density, solute potential, pH, and buffering capacity were primarily affected by fertilizer additions.


Sign in / Sign up

Export Citation Format

Share Document