scholarly journals The synoptic-dynamics of summertime heatwaves in the Sydney area (Australia)

2019 ◽  
Vol 69 (1) ◽  
pp. 116
Author(s):  
Tess Parker ◽  
Julian Quinting ◽  
Michael Reeder

Motivated by the record-breaking heatwaves of early 2017, the synoptic structure and evolution of summer (December–February) heatwaves in the Sydney area is investigated through composite and trajectory analyses. In the upper troposphere, the main features of the composite structure are an isolated upper-tropospheric anticyclonic potential vorticity (PV) anomaly to the south-east of Australia and cyclonic anomalies to the east and south. Back trajectories starting from within the upper-tropospheric anticyclonic PV anomaly on the first day of the heatwave fall into two groups: those that are diabatically cooled in the final 72 h and those that are diabatically heated. Those that are cooled come predominantly from the upstreammiddle troposphere over the Indian Ocean. The change in the potential temperature of these parcels is less than 3K, and so their motion is effectively adiabatic. In contrast, those parcels that are heated in the final 72 h are drawn predominantly from the lower half of the troposphere over the south-western part of the continent. As they ascended, their potential temperature increases by 10K in the mean due to latent heating. At low-levels, the main features of the composite are an anticyclone centred in the Tasman Sea, a broad low over the Southern Ocean and associated anomalous warm northwesterlies over the Sydney area. Five days prior to the heatwave, air parcels that become part of the near surface air mass are located predominantly offshore to the east and south of the continent. The anomalously high surface temperatures can be explained by adiabatic compression and surface sensible heating. For the next 48 h, the air parcels subside and their potential temperature changes little, whereas their temperature increases by around 15Kthrough adiabatic compression. In the final 72 h, as the parcels approach the surface and are entrained into the boundary layer, the potential temperature and temperature both increase by 5K, presumably through surface sensible heating. The record-breaking heatwaves of January and February 2017 are found to be very representative of previous heatwaves in the Sydney area, and in the mean they are synoptically very similar to heatwaves in Victoria, although dynamically there are differences.

2014 ◽  
Vol 71 (9) ◽  
pp. 3202-3222 ◽  
Author(s):  
Cheng-Ku Yu ◽  
Lin-Wen Cheng

Abstract This study used ground-based dual-Doppler observations to explore an understanding of kinematic characteristics of the southwesterly flow associated with the southwest (SW) and ordinary (OR) typhoons immediately off the southwestern coast of Taiwan. The SW (OR) typhoon stated herein is referred to as a typhoon with (without) an obvious combination of its outer circulations and the summer southwesterly monsoon active over the South China Sea. Six typhoon events [Mindulle (2004), Kalmaegi (2008), Morakot (2009), Talim (2005), Jangmi (2008), and Fungwong (2008)] were chosen for analysis; the first (latter) three listed belong to the family of the SW (OR) typhoons. The vertical profiles generated from hourly synthesized winds for these typhoons indicate that intense orographic rainfall tended to occur during the prevalence of the west-southwesterly (WSW) flow that was more perpendicular to the south–north orientation of the topography in southern Taiwan. A unique, consistent feature of the WSW flow associated with the SW typhoon was its persistently increasing intensity with decreasing height in the low to midtroposphere, in contrast to a minor vertical variation in the intensity of the WSW flow for the OR typhoon. A relatively large (small) ratio of the radial and tangential velocities was evident for the SW (OR) typhoon, and the mean inflow angle of the SW typhoon was significantly larger than the typical near-surface inflow angle of previously documented hurricanes over the open ocean. In addition to the typhoon background precipitation, the observed characteristics of the SW- and OR-typhoon-induced WSW flow were shown to be closely related to the degree of orographic enhancement of precipitation.


2013 ◽  
Vol 26 (9) ◽  
pp. 2741-2755 ◽  
Author(s):  
Patrick Kelly ◽  
Brian Mapes

Abstract The effects of a progressively enhanced Asian summer monsoon on the mean zonal wind are examined in a series of experiments using the Community Atmosphere Model version 4 (CAM4). The response of the barotropic mean zonal wind varies in a linear fashion with the forcings of 5, 10, and 20 W m−2 in net radiation over South Asia. The authors increase the strength of the monsoon by making the South Asian land surface hotter (via lower soil albedo). This leads to an enhanced Rossby wave source region over the Balkan Peninsula at 45°N, northwest of the upper-level Tibetan high (TH). Equatorward propagation of Rossby waves causes stationary eddy momentum flux divergence (SEMFD) to the south of this source region. This local area of SEMFD produces easterly tendencies of the barotropic part of the mean zonal wind in the subtropics. As the easterly mean flow strengthens, so do low-level easterlies across the subtropical Atlantic, leading to a westward displacement of the North Atlantic subtropical high (NASH) on its equatorward flank. The western intensification of the NASH causes drying in the west Atlantic and neighboring land masses primarily because of near-surface wind divergence in the anticyclone. These modeling results confirm the mechanisms deduced in the authors’ recent observational analysis of the mean seasonal cycle’s midsummer drought.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2012 ◽  
Vol 58 (209) ◽  
pp. 529-539 ◽  
Author(s):  
Shin Sugiyama ◽  
Hiroyuki Enomoto ◽  
Shuji Fujita ◽  
Kotaro Fukui ◽  
Fumio Nakazawa ◽  
...  

AbstractDuring the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.


Author(s):  
Timothy Marchok

AbstractMultiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center-fixing most variables and a separate scheme used for center-fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015-2017 hurricane seasons in the Atlantic and eastern Pacific Basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecast (HWRF) model. A configuration that tracks only 850 mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of eleven parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the eleven parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850 mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.


2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


1996 ◽  
Vol 59 (8) ◽  
pp. 898-900 ◽  
Author(s):  
Mª JOSÉ BARRIOS ◽  
Mª JESÚS GUALDA ◽  
J. M. CABANAS ◽  
L. M. MEDINA ◽  
R. JORDANO

Thirty-five samples of commercial cheeses, 9 fresh, 9 semicured or semiripened and 17 ripened made with different types of milk (cow, ewe, goat and mixtures of milk of various species) produced in the South of Spain were analyzed for the presence of aflatoxin M1 (AFM1) by high-performance liquid chromatography, In 16 of the 35 samples (45.71%) the presence of AFM1 was detected in concentrations ranging between 20 and 200 ng/g of cheese, In the positive cases, the mean levels of AFM1 were 105.33 ng/g in ripened cheeses, 73.80 ng/g in semiripened cheeses and 42.60 ng/g in fresh cheeses.


Sign in / Sign up

Export Citation Format

Share Document