302. Characterisation of lipopolysaccharide (LPS) receptor expression and the inflammatory response of the rat testis

2005 ◽  
Vol 17 (9) ◽  
pp. 128
Author(s):  
W. Winnall ◽  
J. Muir ◽  
P. Hutchinson ◽  
M. Hedger

Inflammation in the testis is disastrous for the developing spermatogenic cells, leading to temporary and sometimes permanent sterility. The majority of testicular macrophages display a unique protective phenotype whereby production of some key inflammatory mediators, specifically interleukin-1β (IL-1β), tumour necrosis factor-α (TNFα) and NO, in response to stimulation with LPS is relatively poor. Leydig cells and Sertoli cells also respond to high doses of LPS, producing the inflammatory cytokines, particularly IL-1α and IL-6. Although these data suggest that the LPS receptor (toll-like receptor 4, TLR4) and its associated binding proteins, CD14 and MD2, are expressed on several testicular cell types, expression of these proteins in the testis has not been described previously. Using real-time PCR and Western blotting, we established that TLR4, CD14 and MD2 are all expressed by testicular macrophages, Leydig cells, Sertoli cells, spermatocytes and round spermatids. Unexpectedly, the spermatogenic cells displayed the highest level of TLR4 surface expression as determined by flow cytometry. There was no response of the spermatogenic cells to LPS stimulation in vitro, at least in terms of mRNA expression for the inflammatory cytokines, IL-1α, IL-1β, TNFα, IL-6, activin A and the chemoattractants, CXCL-1 and CXCL-2. Although production of several cytokines was relatively diminished, testicular macrophages responded to LPS with a significant increase in mRNA expression for all of these inflammatory regulators. These data indicate that the protective phenotype of the testicular macrophages is not due to insensitivity to LPS or absence of the receptor, but may involve downstream regulation of specific inflammatory responses. The data also suggest that spermatogenic cells are capable of responding to TLR4 ligands, although not by producing inflammatory mediators. The actual function of the LPS receptor on the spermatogenic cells remains to be discovered.

Amino Acids ◽  
2021 ◽  
Author(s):  
Tatsuya Hasegawa ◽  
Ami Mizugaki ◽  
Yoshiko Inoue ◽  
Hiroyuki Kato ◽  
Hitoshi Murakami

AbstractIntestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.


2019 ◽  
Vol 12 (6) ◽  
pp. 916-924 ◽  
Author(s):  
Erma Safitri ◽  
Mas'ud Hariadi

Aim: Biotechnological culture of hypoxia-conditioned (CH) rat mesenchymal stem cells (rMSC-CH) for testicular failure therapy with low libido improves the functional outcome of the testicle for producing spermatogenic cells and repairs Leydig cells in rats (Rattus norvegicus). Materials and Methods: In the first group (T1), rats with testicular failure and low libido were injected with normoxia-conditioned (CN) rMSCs (21% oxygen); in the second group (T2), rats with testicular failure and low libido were injected with rMSC-CH (1% oxygen); in the negative control group (T–), rats with normal testis were injected with 0.1 mL phosphate-buffered saline (PBS); and in the sham group (TS), rats with testicular failure and low libido were injected with 0.1 mL of PBS. Results: Vascular endothelial growth factor expression, as the homing signal, in the groups T2, T–, T1, and TS was 2.00±0.5%, 2.95±0.4%, 0.33±0.48%, and 0±0%, respectively. The number of cluster of differentiation (CD)34+ and CD45+ cells in the groups T– and TS was <20%, whereas that in T1 and T2 groups was >30% and >80%, respectively, showing the mobilization of hematopoietic stem cells (HSCs). The number of spermatogenic cells (spermatogonia, primary spermatocytes, secondary spermatocytes, and spermatid) decreased significantly (p<0.05) in TS compared with that in T–, T1, and T2, whereas that in T2 did not show a significant (p>0.05) decrease compared to that in T–. The improvement in libido, based on the number of Leydig cells producing the hormone testosterone for libido expression, did not increase in T1, whereas T2 was able to maintain the number of Leydig cells significantly compared to that between TS and T1. Conclusion: rMSC-CH culture for testicular failure with low libido showed improvement in the functional outcome of the testicle and in repairing Leydig cells.


2021 ◽  
Author(s):  
Cheng Ding ◽  
Chuang Yang ◽  
Tao Cheng ◽  
Xingyan Wang ◽  
Qiaojie Wang ◽  
...  

Abstract Background:Inflammatory osteolysis is a major complication of total joint replacement surgery that can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of pro-inflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (Porous Se@SiO2 nanospheres) for the management of inflammatory osteolysis. Results: Macrophage-membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) can attenuate lipopolysaccharide (LPS)-induced inflammatory osteolysis by a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduce toxin levels and neutralize pro-inflammatory cytokines. Moreover, the release of Se can induce the polarization of macrophages toward the anti-inflammatory M2-phenotype. These effects are mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase(ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduces the inhibition of osteogenic differentiation caused by pro-inflammation cytokines, confirmed through in vitro and in vivo experiments.Conclusion: Our findings suggest that M-Se@SiO2 has an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 is a promising engineered nano-platform for the treatment of osteolysis arising after arthroplasty.


1982 ◽  
Vol 139 (2) ◽  
pp. 472-475 ◽  
Author(s):  
J GROOTEGOED ◽  
N JUTTE ◽  
F ROMMERTS ◽  
H VANDERMOLEN ◽  
S OHNO

2019 ◽  
Vol 20 (14) ◽  
pp. 3574 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Bu-Yeo Kim ◽  
Soo-Jin Jeong

The purpose of the present study was to evaluate the effects of bakuchiol on the inflammatory response and to identify the molecular mechanism of the inflammatory effects in a lipopolysaccharide (LPS)-stimulated BV-2 mouse microglial cell line and mice model. The production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay. The mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 was measured using reverse transcription–polymerase chain reaction analysis. Mitogen-activated protein kinase (MAPK) phosphorylation was determined by western blot analysis. In vitro experiments, bakuchiol significantly suppressed the production of PGE2 and IL-6 in LPS-stimulated BV-2 cells, without causing cytotoxicity. In parallel, bakuchiol significantly inhibited the LPS-stimulated expression of iNOS, COX-2, and IL-6 in BV-2 cells. However, bakuchiol had no effect on the LPS-stimulated production and mRNA expression of TNF-α or on LPS-stimulated c-Jun NH2-terminal kinase phosphorylation. In contrast, p38 MAPK and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by bakuchiol. In vivo experiments, Bakuchiol reduced microglial activation in the hippocampus and cortex tissue of LPS-injected mice. Bakuchiol significantly suppressed LPS-injected production of TNF-α and IL-6 in serum. These results indicate that the anti-neuroinflammatory effects of bakuchiol in activated microglia are mainly regulated by the inhibition of the p38 MAPK and ERK pathways. We suggest that bakuchiol may be beneficial for various neuroinflammatory diseases.


2020 ◽  
Vol 35 (12) ◽  
pp. 2663-2676
Author(s):  
Valentina Mularoni ◽  
Valentina Esposito ◽  
Sara Di Persio ◽  
Elena Vicini ◽  
Gustavo Spadetta ◽  
...  

Abstract STUDY QUESTION What are the consequences of ageing on human Leydig cell number and hormonal function? SUMMARY ANSWER Leydig cell number significantly decreases in parallel with INSL3 expression and Sertoli cell number in aged men, yet the in vitro Leydig cell androgenic potential does not appear to be compromised by advancing age. WHAT IS KNOWN ALREADY There is extensive evidence that ageing is accompanied by decline in serum testosterone levels, a general involution of testis morphology and reduced spermatogenic function. A few studies have previously addressed single features of the human aged testis phenotype one at a time, but mostly in tissue from patients with prostate cancer. STUDY DESIGN, SIZE, DURATION This comprehensive study examined testis morphology, Leydig cell and Sertoli cell number, steroidogenic enzyme expression, INSL3 expression and androgen secretion by testicular fragments in vitro. The majority of these endpoints were concomitantly evaluated in the same individuals that all displayed complete spermatogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS Testis biopsies were obtained from 15 heart beating organ donors (age range: 19–85 years) and 24 patients (age range: 19–45 years) with complete spermatogenesis. Leydig cells and Sertoli cells were counted following identification by immunohistochemical staining of specific cell markers. Gene expression analysis of INSL3 and steroidogenic enzymes was carried out by qRT-PCR. Secretion of 17-OH-progesterone, dehydroepiandrosterone, androstenedione and testosterone by in vitro cultured testis fragments was measured by LC-MS/MS. All endpoints were analysed in relation to age. MAIN RESULTS AND THE ROLE OF CHANCE Increasing age was negatively associated with Leydig cell number (R = −0.49; P &lt; 0.01) and concomitantly with the Sertoli cell population size (R= −0.55; P &lt; 0.001). A positive correlation (R = 0.57; P &lt; 0.001) between Sertoli cell and Leydig cell numbers was detected at all ages, indicating that somatic cell attrition is a relevant cellular manifestation of human testis status during ageing. INSL3 mRNA expression (R= −0.52; P &lt; 0.05) changed in parallel with Leydig cell number and age. Importantly, steroidogenic capacity of Leydig cells in cultured testis tissue fragments from young and old donors did not differ. Consistently, age did not influence the mRNA expression of steroidogenic enzymes. The described changes in Leydig cell phenotype with ageing are strengthened by the fact that the different age-related effects were mostly evaluated in tissue from the same men. LIMITATIONS, REASONS FOR CAUTION In vitro androgen production analysis could not be correlated with in vivo hormone values of the organ donors. In addition, the number of samples was relatively small and there was scarce information about the concomitant presence of potential confounding variables. WIDER IMPLICATIONS OF THE FINDINGS This study provides a novel insight into the effects of ageing on human Leydig cell status. The correlation between Leydig cell number and Sertoli cell number at any age implies a connection between these two cell types, which may be of particular relevance in understanding male reproductive disorders in the elderly. However aged Leydig cells do not lose their in vitro ability to produce androgens. Our data have implications in the understanding of the physiological role and regulation of intratesticular sex steroid levels during the complex process of ageing in humans. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from Prin 2010 and 2017. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.


2015 ◽  
Vol 114 (08) ◽  
pp. 337-349 ◽  
Author(s):  
Dragana Komnenov ◽  
Corey Scipione ◽  
Zainab Bazzi ◽  
Justin Garabon ◽  
Marlys Koschinsky ◽  
...  

SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.


2002 ◽  
Vol 172 (3) ◽  
pp. 565-574 ◽  
Author(s):  
RJ Clifton ◽  
L O'Donnell ◽  
DM Robertson

This study investigates the effects of spermatogenic germ cells on inhibin alpha-subunit and beta B-subunit expression, and inhibin alpha-subunit and inhibin B production by rat Sertoli cells in vitro. Sertoli cells isolated from 19-day-old rats were cultured for 48 h at 32 degrees C, in the presence or absence of FSH (2.3-2350 mIU/ml), and in the presence of pachytene spermatocytes, round spermatids or cytoplasts of elongated spermatids purified from adult rat testis by elutriation and density gradient separation. Sertoli cell secretion of inhibin alpha-subunit and inhibin B, as measured by immunoassay, was dose-dependently stimulated by FSH (maximal stimulation 13- and 2-fold, respectively). Round spermatids or cytoplasts co-cultured with Sertoli cells had no effect on basal or FSH-induced secretion of inhibin alpha-subunit or inhibin B. When Sertoli cells were co-cultured with pachytene spermatocytes, inhibin alpha-subunit secretion was unaltered, while inhibin B secretion was suppressed in a cell concentration-dependent manner to reach a maximal suppression of 45% compared with Sertoli cells alone (P<0.01). A similar suppression in inhibin B was still observed (64% of Sertoli cells alone) when the pachytene spermatocytes were separated from Sertoli cells by a 0.45 microm pore membrane barrier in bicameral chambers. Pachytene spermatocytes also suppressed FSH-induced inhibin B levels in Sertoli cell co-cultures and this suppression was attributed to a decrease in basal inhibin B production rather than a change in FSH responsiveness. Quantitation of Sertoli cell inhibin alpha- and beta B-subunit mRNA by quantitative (real-time) PCR demonstrated that pachytene spermatocytes did not alter Sertoli cell alpha-subunit mRNA expression, but significantly (P<0.01) suppressed basal and FSH-induced beta B-subunit mRNA expression to a similar degree to that seen with inhibin B protein levels. It is concluded that pachytene spermatocytes in vitro suppress Sertoli cell inhibin B secretion via factor-mediated suppression of inhibin beta B-subunit expression. These findings support the hypothesis that specific germ cell types can influence inhibin B secretion by the testis independent of FSH regulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Vincenza Ciaramella ◽  
Rosanna Chianese ◽  
Paolo Pariante ◽  
Silvia Fasano ◽  
Riccardo Pierantoni ◽  
...  

Hypothalamic Gonadotropin Releasing Hormone (GnRH),viaGnRH receptor (GnRHR), is the main actor in the control of reproduction, in that it induces the biosynthesis and the release of pituitary gonadotropins, which in turn promote steroidogenesis and gametogenesis in both sexes. Extrabrain functions of GnRH have been extensively described in the past decades and, in males, local GnRH activity promotes the progression of spermatogenesis and sperm functions at several levels. The canonical localization ofGnrh1andGnrhr1mRNA is Sertoli and Leydig cells, respectively, but ligand and receptor are also expressed in germ cells. Here, we analysed the expression rate ofGnrh1andGnrhr1in rat testis (180 days old) by quantitative real-time PCR (qPCR) and byin situhybridization we localizedGnrh1andGnrhr1mRNA in different spermatogenic cells of adult animals. Our data confirm the testicular expression ofGnrh1and ofGnrhr1in somatic cells and provide evidence that their expression in the germinal compartment is restricted to haploid cells. In addition, not only Sertoli cells connected to spermatids in the last steps of maturation but also Leydig and peritubular myoid cells expressGnrh1.


Sign in / Sign up

Export Citation Format

Share Document