Fire spread in canyons

2004 ◽  
Vol 13 (3) ◽  
pp. 253 ◽  
Author(s):  
Domingos Xavier Viegas ◽  
Luis Paulo Pita

Canyons or ridges are associated with a large number of fatal accidents produced during forest fires all over the world. A contribution to the understanding of fire behaviour in these terrain conditions is given in this paper. The basic geometrical parameters of the canyon configuration are described. An analytical model assuming elliptical growth of point ignition fires and constant values of rate of spread is proposed. A non-dimensional formulation to transfer results from analytical, numerical, laboratory or field simulations to other situations is proposed. An experimental study at laboratory scale on a special test rig is described. A wide set of canyon configurations were covered in the experimental program. In spite of the relatively small scale of the experiments they were able to put in evidence some of the main features found in fires spreading in this type of terrain. They show that in practically all cases the rate of spread of the fire front is non-constant. On the contrary, the fire has a dynamic behaviour and its properties depend not only on the canyon geometry but on the history of fire development as well. The convection induced by the fire is enhanced by terrain curvature and the fire accelerates causing the well-known blow-up that is associated with canyon fires. The rate of spread of the head fire increases continuously even in the absence of wind or any other special feature or change of boundary conditions that are sometimes invoked to justify such fire behaviour. The results of the present study confirm the predictions of a previous numerical study of the flow and fire spread in canyons that showed the important feedback effect of the fire on the atmospheric flow and how this affects fire behaviour in canyons. Results from a field experiment carried out in a canyon-shaped plot covered by tall shrubs were used to validate the laboratory scale experiments. Case studies related to fatal accidents that occurred in canyon-shaped configurations are analysed and recommendations to deal with this problem are made. It is shown that these accidents may occur even in the absence of special fuel or atmospheric conditions as they are intrinsically related to terrain configuration.

2012 ◽  
Vol 21 (7) ◽  
pp. 828 ◽  
Author(s):  
F. Pimont ◽  
J.-L. Dupuy ◽  
R. R. Linn

Wind and slope are commonly accepted to be major environmental factors affecting the manner in which wildfires propagate. Fire-line width has been observed as having a significant effect on fire behaviour in some experimental fires. Most wildfire behaviour models and fire behaviour prediction systems take wind and slope effects into account when determining the rate of spread, but do not take into account the influence of fire width on the coupled effects of slope and wind. In the present study, the effect of topographic slope on rate of spread under weak (1 m s–1), moderate (5 m s–1) and strong (12 m s–1) wind speeds is investigated for two different initial fire widths (20 and 50 m) in a typical Mediterranean garrigue, using the coupled atmosphere–fire HIGRAD-FIRETEC model. The results show non-trivial combined effects and suggest a strong effect of fire width under low-wind conditions, especially for steep slopes. Simulated spread rates were compared with predictions of existing models of operational systems and a reasonable agreement was found. Additional exploratory simulations of fire behaviour in small canyons are provided. These simulations show how combined effects of wind, slope and fire-front size can induce different fire behaviours that operational models could fail to predict and provide insight that could be valuable for analysis of blow-up fires. These preliminary results also suggest that 3D physically based models could be used in the future to investigate how operational models can include non-local effects of fire propagation.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Daryn Sagel ◽  
Kevin Speer ◽  
Scott Pokswinski ◽  
Bryan Quaife

Most wildland and prescribed fire spread occurs through ground fuels, and the rate of spread (RoS) in such environments is often summarized with empirical models that assume uniform environmental conditions and produce a unique RoS. On the other hand, representing the effects of local, small-scale variations of fuel and wind experienced in the field is challenging and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need for further understanding of fire dynamics at small scales in realistic settings. This work describes adapted computer vision techniques used to form fine-scale measurements of the spatially and temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary wind conditions. A large number of distinct fire front displacements are then used statistically to analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential distribution, suggesting a model for fire spread as a random process at this scale.


2014 ◽  
Vol 11 (6) ◽  
pp. 1449-1459 ◽  
Author(s):  
I. N. Fletcher ◽  
L. E. O. C. Aragão ◽  
A. Lima ◽  
Y. Shimabukuro ◽  
P. Friedlingstein

Abstract. Current methods for modelling burnt area in dynamic global vegetation models (DGVMs) involve complex fire spread calculations, which rely on many inputs, including fuel characteristics, wind speed and countless parameters. They are therefore susceptible to large uncertainties through error propagation, but undeniably useful for modelling specific, small-scale burns. Using observed fractal distributions of fire scars in Brazilian Amazonia in 2005, we propose an alternative burnt area model for tropical forests, with fire counts as sole input and few parameters. This model is intended for predicting large-scale burnt area rather than looking at individual fire events. A simple parameterization of a tapered fractal distribution is calibrated at multiple spatial resolutions using a satellite-derived burnt area map. The model is capable of accurately reproducing the total area burnt (16 387 km2) and its spatial distribution. When tested pan-tropically using the MODIS MCD14ML active fire product, the model accurately predicts temporal and spatial fire trends, but the magnitude of the differences between these estimates and the GFED3.1 burnt area products varies per continent.


2018 ◽  
Vol 27 (11) ◽  
pp. 727 ◽  
Author(s):  
Miguel G. Cruz ◽  
Andrew L. Sullivan ◽  
James S. Gould ◽  
Richard J. Hurley ◽  
Matt P. Plucinski

The effect of grass fuel load on fire behaviour and fire danger has been a contentious issue for some time in Australia. Existing operational models have placed different emphases on the effect of fuel load on model outputs, which has created uncertainty in the operational assessment of fire potential and has led to end-user and public distrust of model outcomes. A field-based experimental burning program was conducted to quantify the effect of fuel load on headfire rate of spread and other fire behaviour characteristics in grasslands. A total of 58 experimental fires conducted at six sites across eastern Australia were analysed. We found an inverse relationship between fuel load and the rate of spread in grasslands, which is contrary to current, untested, modelling assumptions. This result is valid for grasslands where fuel load is not a limiting factor for fire propagation. We discuss the reasons for this effect and model it to produce a fuel load effect function that can be applied to operational grassfire spread models used in Australia. We also analyse the effect of fuel load on flame characteristics and develop a model for flame height as a function of rate of fire spread and fuel load.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


2017 ◽  
Vol 26 (4) ◽  
pp. 331 ◽  
Author(s):  
C. M. Thomas ◽  
J. J. Sharples ◽  
J. P. Evans

Dynamic fire behaviour involves rapid changes in fire behaviour without significant changes in ambient conditions, and can compromise firefighter and community safety. Dynamic fire behaviour cannot be captured using spatial implementations of empirical fire-spread models predicated on the assumption of an equilibrium, or quasi-steady, rate of spread. In this study, a coupled atmosphere–fire model is used to model the dynamic propagation of junction fires, i.e. when two firelines merge at an oblique angle. This involves very rapid initial rates of spread, even with no ambient wind. The simulations are in good qualitative agreement with a previous experimental study, and indicate that pyro-convective interaction between the fire and the atmosphere is the key mechanism driving the dynamic fire propagation. An examination of the vertical vorticity in the simulations, and its relationship to the fireline geometry, gives insight into this mechanism. Junction fires have been modelled previously using curvature-dependent rates of spread. In this study, however, although fireline geometry clearly influences rate of spread, no relationship is found between local fireline curvature and the simulated instantaneous local rate of spread. It is possible that such a relationship may be found at larger scales.


2015 ◽  
Vol 24 (7) ◽  
pp. 1008 ◽  
Author(s):  
J. R. Raposo ◽  
S. Cabiddu ◽  
D. X. Viegas ◽  
M. Salis ◽  
J. Sharples

Results from a laboratory-scale investigation of a fire spreading on the windward face of a triangular-section hill of variable shape with wind perpendicular to the ridgeline are reported. They confirm previous observations that the fire enlarges its lateral spread after reaching the ridgeline, entering the leeward face with a much wider front. Reference fire spread velocities were measured and analysed, putting in evidence the importance of the dynamic effect due to flow velocity and its associated horizontal-axis separation vortex strength without dependence on hill geometry. Similar parameters estimated from three forest fires compared favourably with the laboratory-scale measurements.


1988 ◽  
Vol 18 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Ralph M. Nelson Jr. ◽  
Carl W. Adkins

Data for the behavior of 59 experimental wind-driven fires were extracted from the literature for use in determining a correlation among several variables known to influence the rate of forest fire spread. Also included in the correlation were unpublished data from six field fires. This information consisted of behavior measurements on small-scale burns of artificial fuels in the laboratory and measurements on field fires in diverse fuels such as grass and logging slash. Fire intensities ranged from about 40 to 4600 kW/m. Dimensional analysis was used to derive three variables governing the fire spread process. These variables, rearranged into a dimensionless rate of spread and a dimensionless wind speed, are strongly correlated and lead to a simple expression for fire spread rate in terms of fuel consumption, ambient wind speed, and flame residence time.


Author(s):  
Phil Cheney ◽  
Andrew Sullivan

Grassfires: Fuel, Weather and Fire Behaviour presents information from CSIRO on the behaviour and spread of fires in grasslands. This second edition follows over 10 years of research aimed at improving the understanding of the fundamental processes involved in the behaviour of grassfires. The book covers all aspects of fire behaviour and spread in the major types of grasses in Australia. It examines the factors that affect fire behaviour in continuous grassy fuels; fire in spinifex fuels; the effect of weather and topography on fire spread; wildfire suppression strategies; and how to reconstruct grassfire spread after the fact. The three meters designed by CSIRO for the prediction of fire danger and rate of spread of grassfires are explained and their use and limitations discussed. This new edition expands the discussion of historical fires including Aboriginal burning practices, the chemistry of combustion, and the structure of turbulent diffusion flames. It also examines fire safety, including the difficulty of predicting wind strength and direction and the impact of threshold wind speed on safe fire suppression. Myths and fallacies about fire behaviour are explained in relation to their impact on personal safety and survival. Grassfires will be a valuable reference for rural fire brigade members, landholders, fire authorities, researchers and those studying landscape and ecological processes.


2011 ◽  
Vol 20 (4) ◽  
pp. 497 ◽  
Author(s):  
Justin Podur ◽  
B. Mike Wotton

Forest fire managers have long understood that most of a fire’s growth typically occurs on a small number of days when burning conditions are conducive for spread. Fires either grow very slowly at low intensity or burn considerable area in a ‘run’. A simple classification of days into ‘spread events’ and ‘non-spread events’ can greatly improve estimates of area burned. Studies with fire-growth models suggest that the Canadian Forest Fire Behaviour Prediction System (FBP System) seems to predict growth well during high-intensity ‘spread events’ but tends to overpredict rate of spread for non-spread events. In this study, we provide an objective weather-based definition of ‘spread events’, making it possible to assess the probability of having a spread event on any particular day. We demonstrate the benefit of incorporating this ‘spread event’ day concept into a fire-growth model based on the Canadian FBP System.


Sign in / Sign up

Export Citation Format

Share Document