scholarly journals Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution

2017 ◽  
Vol 114 (16) ◽  
pp. 4177-4182 ◽  
Author(s):  
Sarah E. Hobbie ◽  
Jacques C. Finlay ◽  
Benjamin D. Janke ◽  
Daniel A. Nidzgorski ◽  
Dylan B. Millet ◽  
...  

Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains.

2021 ◽  
Vol 118 (39) ◽  
pp. e2106576118
Author(s):  
Yulong Yin ◽  
Rongfang Zhao ◽  
Yi Yang ◽  
Qingfeng Meng ◽  
Hao Ying ◽  
...  

Hundreds of millions of smallholders in emerging countries substantially overuse nitrogen (N) fertilizers, driving local environmental pollution and global climate change. Despite local demonstration-scale successes, widespread mobilization of smallholders to adopt precise N management practices remains a challenge, largely due to associated high costs and complicated sampling and calculations. Here, we propose a long-term steady-state N balance (SSNB) approach without these complications that is suitable for sustainable smallholder farming. The hypothesis underpinning the concept of SSNB is that an intensively cultivated soil–crop system with excessive N inputs and high N losses can be transformed into a steady-state system with minimal losses while maintaining high yields. Based on SSNB, we estimate the optimized N application range across 3,824 crop counties for the three staple crops in China. We evaluated SSNB first in ca. 18,000 researcher-managed on-farm trials followed by testing in on-farm trials with 13,760 smallholders who applied SSNB-optimized N rates under the guidance of local extension staff. Results showed that SSNB could significantly reduce N fertilizer use by 21 to 28% while maintaining or increasing yields by 6 to 7%, compared to current smallholder practices. The SSNB approach could become an effective tool contributing to the global N sustainability of smallholder agriculture.


2015 ◽  
Vol 4 (3) ◽  
pp. 116 ◽  
Author(s):  
Lynette K. Abbott ◽  
David A. C. Manning

<p>Soil health is dependent upon complex bio-physical and bio-chemical processes which interact in space and time. Microrganisms and fauna in soil comprise highly diverse and dynamic communities that contribute, over either short or long time frames, to the transformation of geological minerals and release of essential nutrients for plant growth. Certified organic soil management practices generally restrict the use of chemically-processed highly soluble plant nutrients, leading to dependence on nutrient sources that require microbial transformation of poorly soluble geological minerals. Consequently, slow release of nutrients controls their rate of uptake by plants and associated plant physiological processes. Microbial and faunal interactions influence soil structure at various scales, within and between crystalline mineral grains, creating complex soil pore networks that further influence soil function, including the nutrient release and uptake by roots. The incorporation of organic matter into soil, as either manure or compost in organic farming systems is controlled to avoid excessive release of soluble nutrients such as nitrogen and phosphorus, while simultaneously contributing an essential source of carbon for growth and activity of soil organisms. The interdependence of many soil physical and chemical processes contributing to soil health is strongly linked to activities of the organisms living in soil as well as to root structure and function. Capitalizing on these contributions to soil health cannot be achieved without holistic, multiscale approaches to nutrient management, an understanding of interactions between carbon pools, mineral complexes and soil mineralogy, and detailed examination of farm nutrient budgets.</p>


Nitrogen ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 34-51
Author(s):  
Amitava Chatterjee

Nitrogen (N) losses from field crops have raised environmental concerns. This manuscript accompanies a database of N loss studies from non-legume field crops conducted across the conterminous United States. Cumulative N losses through nitrous oxide-denitrification (CN2O), ammonia volatilization (CNH3), and nitrate leaching (CNO3−) during the growing season and associated crop, soil, and water management information were gathered to determine the extent and controls of these losses. This database consisted of 404, 26, and 358 observations of CN2O, CNH3, and CNO3− losses, respectively, from sixty-two peer-reviewed manuscripts. Corn (Zea mays) dominated the N loss studies. Losses ranged between −0.04 to 16.9, 2.50 to 50.9, and 0 to 257 kg N ha−1 for CN2O, CNH3 and CNO3−, respectively. Most CN2O and CNO3− observations were reported from Colorado (n = 100) and Iowa (n = 176), respectively. The highest values of CN2O, and CNO3− were reported from Illinois and Minnesota states, and corn and potato (Solanum tuberosum), respectively. The application of anhydrous NH3 had the highest value of CN2O loss, and ammonium nitrate had the highest CNO3− loss. Among the different placement methods, the injection of fertilizer-N had the highest CN2O loss, whereas the banding of fertilizer-N had the highest CNO3− loss. The maximum CNO3− loss was higher for chisel than no-tillage practice. Both CN2O and CNO3− were positively correlated with fertilizer N application rate and the amount of water input (irrigation and rainfall). Fertilizer-N management strategies to control N loss should consider the spatio-temporal variability of interactions among climate, crop-and soil types.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 158
Author(s):  
John L. Havlin ◽  
Robert Austin ◽  
David Hardy ◽  
Adam Howard ◽  
Josh L. Heitman

With limited research supporting local nutrient management decisions in North Carolina grape (Vitis vinifera) production, field studies (2015–17) were conducted to evaluate late season foliar nitrogen (N) application on leaf and petiole N concentration and yeast assimilable N (YAN) in the fruit. Foliar urea (1% v/v) was applied at different rates and application times beginning pre-and post-veraison. Compared to soil applied N, late season foliar N substantially enhanced petiole N and grape YAN. Smaller split N applications were generally more effective in increasing YAN than single larger N rates. These data demonstrate the value of assessing plant N content at full bloom with petiole N analysis or remote sensing to guide foliar N management decisions. Additional field studies (2008–11) were conducted to evaluate pre-bud soil applied phosphorus (P) and potassium (K) effects on petiole P and K nutrient status. Fertilizer P and K were initially broadcast applied (0–896 kg P2O5 ha−1; 0–672 kg K2O ha−1) prior to bud-break in 2008–09 and petiole P and K at full bloom soil test P and K were monitored for three to four years after application. Soil test and petiole P and K were significantly increased with increasing P and K rates, which subsequently declined to near unfertilized levels over the sampling time depending on site and P and K rate applied. These data demonstrate the value of annually monitoring petiole P and K levels to accurately assess plant P and K status to better inform nutrient management decisions.


2021 ◽  
Vol 34 (4) ◽  
pp. 824-829
Author(s):  
CAMILA SENO NASCIMENTO ◽  
CAROLINA SENO NASCIMENTO ◽  
ARTHUR BERNARDES CECÍLIO FILHO

ABSTRACT Splitting nitrogen (N) fertilizer application can be an efficient nutrient management technique to improve productivity and plant quality, as well as to reduce the negative environmental impact caused by N losses. In this context, the present study investigated how the management of N affects the agronomic characteristics of field-grown arugula plants. Nine treatments were assessed in a randomized complete block design, in a 4 x 2 + 1 factorial scheme, with three replicates. The evaluated factors were doses of N (60, 120, 180 and 240 kg N ha-1), split N fertilizer applications at side-dress (two and three times) and an additional treatment without a N supply. Maximum height was obtained with the application of 198 kg N ha-1. Nitrate content, fresh mass and productivity increased with increasing N doses. There was no effect of split N fertilizer applications on the characteristics evaluated. Therefore, the supply of 240 kg N ha-1 divided into two portions was considered as the best management strategy.


1999 ◽  
Vol 40 (10) ◽  
pp. 43-49 ◽  
Author(s):  
Ch. Lampert ◽  
P. H. Brunner

Nutrient management has to consider both: Nutrients as essential elements for the biosphere with limited resources and nutrients as potential environmental pollutants (eutrophication, groundwater-deterioration). Materials Accounting techniques enable to describe and quantify the metabolism of Nitrogen and Phosphorus in large river Basins, such as the Danube Basin. By knowing the sources and pathways of nutrients it is possible (i) to identify the key causes of pollution problems and (ii) to point out inefficient use of the limited resource “nutrients”. Additionally, it is possible to design efficient measures based on nutrient balances. Materials Accounting observes the changes of stocks within a time interval. Therefore, it allows the early recognition of the accumulation and depletion of harmful substances (e.g. Nitrate in the groundwater) or of limited resources (e.g. P in topsoils) in the environment. In combination with scenario development Materials Accounting has a high predictive power. There is a substantial difference in designing the most efficient measures for reducing nutrient inputs or to optimise the use of limited resources in the entire Danube Basin and in individual countries.


2005 ◽  
Vol 51 (11) ◽  
pp. 183-191 ◽  
Author(s):  
C. Schilling ◽  
H. Behrendt ◽  
A. Blaschke ◽  
S. Danielescu ◽  
G. Dimova ◽  
...  

In the framework of the project daNUbs (Nutrient Management in the Danube Basin and its Impact on the Black Sea) the MONERIS emission model is used for the basin wide calculation of nutrient (nitrogen and phosphorus) emissions in the Danube Basin. The MONERIS model was developed and successfully applied for German river catchments. Based on investigations in selected test regions (case studies) the daNUbs approach is to check the applicability of the MONERIS emission model for the specific conditions of the Danube Basin in more detail than is possible with a basin wide application. Six case studies with areas of 400–3,500 km2 and several subcatchments have been selected in order to represent different conditions along the Danube Basin. In this study region intensive data collection and enhanced monitoring has been performed in order to raise the database significantly above the generally available data. Water balance as well as nutrient balance calculations have been performed with the MONERIS model as well as with other approaches. Results are compared to each other and to data from monitoring. Results up till now showed the applicability and sensitivity of the MONERIS approach in different conditions of the Danube Basin (e.g. emissions via groundwater). They indicated that the nitrogen retention in the catchments is well described with the MONERIS model.


2006 ◽  
Vol 86 (4) ◽  
pp. 655-663 ◽  
Author(s):  
J H Klapwyk ◽  
Q M Ketterings ◽  
G S Godwin ◽  
D. Wang

Dairy manure is important for corn (Zea mays L.) production in New York. Optimizing corn yield while minimizing environmental loss with manure nutrients is often a challenge. A potential tool for improving N management is the Illinois Soil Nitrogen Test (ISNT), which estimates amino sugar N, a pool of potentially mineralizable N for corn uptake. The objectives of this study were to determine (1) the short-term effects of manure applications on ISNT-N, and (2) the longer-term impacts of annual additions of composted and liquid dairy manure on ISNT-N. A 6-wk incubation study showed that NH4-N from manure temporarily (< 2 wk) increased ISNT results. A 4-yr field study was conducted with annual spring applications of two rates of composted dairy manure (45 and 77 Mg ha-1) and two liquid dairy manure rates (63.5 and 180 kL ha-1). Results showed that ISNT-N slightly decreased over time in check plots (no manure or fertilizer additions) and that increases in ISNT-N over time in compost and liquid manure amended plots were consistent with changes in N credits currently given to manures in New York. Our results suggest that the ISNT accounts for N in previously applied compost and manure amendments, but that samples should not be taken within 2-wk following manure addition. Key words: Amino sugar, compost, Illinois Soil Nitrogen Test, nitrogen, manure, nutrient management


1998 ◽  
Vol 78 (2) ◽  
pp. 377-383 ◽  
Author(s):  
R. Pradhan ◽  
R. C. Izaurralde ◽  
S. S. Malhi ◽  
M. Nyborg

Soil erosion induces variability in soil properties which may influence nutrient use efficiency. A 2-yr field study was conducted with the following objectives: (1) to determine the recovery of 15N-labelled fertilizers applied to barley growing on artificially eroded soil, and (2) to compare N losses from nitrate- and ammonia-based N fertilizers. Field experiments were conducted in north-central Alberta in 1991 and 1992 on an Orthic Gray Luvisol (Site 1) and on an Eluviated Black Chernozem (Site 2) soil. At each site, a factorial experiment of three levels of artificial erosion (0, 10 and 20 cm) and three N sources (KNO3, urea, and control) was laid out as a split-plot design with four replications. The 15N-labelled fertilizers (5.63 atom % abundance) were banded in June 1991 at 150 kg N ha−1 within 46-cm by 46-cm steel frame microplots. The proportion of added N recovered by barley (Hordeum vulgare L.) was not affected by erosion level. Periodical water saturation and NO3− availability suggested denitrification as a major mechanism of N loss. The N losses ranged from 12 to 51 g N ha−1 in 1991 and 20 to 80 kg N ha−1 over the 2-yr period, but the N losses did not relate to erosion level. The N losses after 2 yr were greater from KNO3 than from urea at Site 1. Most of the added 15N was found in the surface 0- to 15-cm layer, but amounts of 15N were detected in the 15- to 30-cm or 30- to 45-cm layers. The results call for continued development of N management techniques geared to optimize crop growth and minimize losses from fields. Key words: Artificial erosion, barley, fate of applied N, 15N-labelled fertilizers, N immobilization, N loss


2011 ◽  
Vol 45 (17) ◽  
pp. 7151-7157 ◽  
Author(s):  
Bram Sercu ◽  
Laurie C. Van De Werfhorst ◽  
Jill L. S. Murray ◽  
Patricia A. Holden
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document