scholarly journals Biological tissue-inspired tunable photonic fluid

2018 ◽  
Vol 115 (26) ◽  
pp. 6650-6655 ◽  
Author(s):  
Xinzhi Li ◽  
Amit Das ◽  
Dapeng Bi

Inspired by how cells pack in dense biological tissues, we design 2D and 3D amorphous materials that possess a complete photonic bandgap. A physical parameter based on how cells adhere with one another and regulate their shapes can continuously tune the photonic bandgap size as well as the bulk mechanical properties of the material. The material can be tuned to go through a solid–fluid phase transition characterized by a vanishing shear modulus. Remarkably, the photonic bandgap persists in the fluid phase, giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled nonrigid photonic structures with photonic bandgaps that can be controlled in real time via mechanical and thermal tuning.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247727
Author(s):  
Shayan Shahab ◽  
Mehran Kasra ◽  
Alireza Dolatshahi-Pirouz

Natural biopolymer-based hydrogels especially agarose and collagen gels, considering their biocompatibility with cells and their capacity to mimic biological tissues, have widely been used for in-vitro experiments and tissue engineering applications in recent years; nevertheless their mechanical properties are not always optimal for these purposes. Regarding the importance of the mechanical properties of hydrogels, many mechanical characterization studies have been carried out for such biopolymers. In this work, we have focused on understanding the mechanical role of agarose and collagen concentration on the hydrogel strength and elastic behavior. In this direction, Amirkabir Magnetic Bead Rheometry (AMBR) characterization device equipped with an optimized electromagnet, was designed and constructed for the measurement of hydrogel mechanical properties. The operation of AMBR set-up is based on applying a magnetic field to actuate magnetic beads in contact with the gel surface in order to actuate the gel itself. In simple terms the magnetic beads leads give rise to mechanical shear stress on the gel surface when under magnetic influence and together with the associated bead-gel displacement it is possible to calculate the hydrogel shear modulus. Agarose and Collagen gels with respectively 0.2–0.6 wt % and 0.2–0.5 wt % percent concentrations were prepared for mechanical characterization in terms of their shear modulus. The shear modulus values for the different percent concentrations of the agarose gel were obtained in the range 250–650 Pa, indicating the shear modulus increases by increasing in the agar gel concentration. In addition to this, the values of shear modulus for the collagen gel increase as function of concentration in the range 240–520 Pa in accordance with an approximately linear relationship between collagen concentration and gel strength.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2252 ◽  
Author(s):  
Lulu Wang

Pathological changes in biological tissue are related to the changes in mechanical properties of biological tissue. Conventional medical screening tools such as ultrasound, magnetic resonance imaging or computed tomography have failed to produce the elastic properties of biological tissues directly. Ultrasound elasticity imaging (UEI) has been proposed as a promising imaging tool to map the elastic parameters of soft tissues for the clinical diagnosis of various diseases include prostate, liver, breast, and thyroid gland. Existing UEI-based approaches can be classified into three groups: internal physiologic excitation, external excitation, and acoustic radiation force (ARF) excitation methods. Among these methods, ARF has become one of the most popular techniques for the clinical diagnosis and treatment of disease. This paper provides comprehensive information on the recently developed ARF-based UEI techniques and instruments for biomedical applications. The mechanical properties of soft tissue, ARF and displacement estimation methods, working principle and implementation instruments for each ARF-based UEI method are discussed.


2019 ◽  
Vol 116 (14) ◽  
pp. 6560-6568 ◽  
Author(s):  
Matthias Merkel ◽  
Karsten Baumgarten ◽  
Brian P. Tighe ◽  
M. Lisa Manning

We present an approach to understand geometric-incompatibility–induced rigidity in underconstrained materials, including subisostatic 2D spring networks and 2D and 3D vertex models for dense biological tissues. We show that in all these models a geometric criterion, represented by a minimal lengthℓ¯min, determines the onset of prestresses and rigidity. This allows us to predict not only the correct scalings for the elastic material properties, but also the precise magnitudes for bulk modulus and shear modulus discontinuities at the rigidity transition as well as the magnitude of the Poynting effect. We also predict from first principles that the ratio of the excess shear modulus to the shear stress should be inversely proportional to the critical strain with a prefactor of 3. We propose that this factor of 3 is a general hallmark of geometrically induced rigidity in underconstrained materials and could be used to distinguish this effect from nonlinear mechanics of single components in experiments. Finally, our results may lay important foundations for ways to estimateℓ¯minfrom measurements of local geometric structure and thus help develop methods to characterize large-scale mechanical properties from imaging data.


Author(s):  
A. G. Dubko ◽  
R. S. Osipov ◽  
Yu. V. Bondarenko ◽  
O. F. Bondarenko

The paper shows the relevance of studying the mechanical properties of biological tissues and biocompatible materials for solving the problems of general and reconstructive surgery, transplantology, manual therapy, virtual simulation of surgical operations, robotic surgery, etc. The authors present basic information about biological tissue as an object of research and give a brief overview of the devices used for studying the mechanical characteristics of biological tissues. An experimental system for testing deformations of biological tissues and biocompatible materials during compression is described. The system is developed using modern hardware and software, as well as effective technical solutions. The results of the practical use of the developed device are presented and the obtained dependences of the mechanical stress of biological tissue samples on their deformation under pressure are analyzed. The system has high metrological characteristics and low cost, and allows performing all the necessary functions for measuring, processing and visualizing the data. The measurements obtained with this system can help form the recommendations for doctors on choosing the optimal operation mode of medical devices and instruments in each specific case. In addition, the measured data can be used to create mathematical models of biological tissues and biocompatible materials in order to further carry out virtual experiments. In further studies, the authors plan to create the mathematical models of biological tissues based on the finite element method and using the actual values characterizing the tissue, obtained with the developed system.


1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1656
Author(s):  
Carla Huerta-López ◽  
Jorge Alegre-Cebollada

Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


2016 ◽  
Vol 113 (18) ◽  
pp. 4953-4957 ◽  
Author(s):  
Carlo Pierleoni ◽  
Miguel A. Morales ◽  
Giovanni Rillo ◽  
Markus Holzmann ◽  
David M. Ceperley

The phase diagram of high-pressure hydrogen is of great interest for fundamental research, planetary physics, and energy applications. A first-order phase transition in the fluid phase between a molecular insulating fluid and a monoatomic metallic fluid has been predicted. The existence and precise location of the transition line is relevant for planetary models. Recent experiments reported contrasting results about the location of the transition. Theoretical results based on density functional theory are also very scattered. We report highly accurate coupled electron–ion Monte Carlo calculations of this transition, finding results that lie between the two experimental predictions, close to that measured in diamond anvil cell experiments but at 25–30 GPa higher pressure. The transition along an isotherm is signaled by a discontinuity in the specific volume, a sudden dissociation of the molecules, a jump in electrical conductivity, and loss of electron localization.


Sign in / Sign up

Export Citation Format

Share Document