scholarly journals Dicer up-regulation by inhibition of specific proteolysis in differentiating monocytic cells

2020 ◽  
Vol 117 (15) ◽  
pp. 8573-8583
Author(s):  
Devaraj Basavarajappa ◽  
Stella Uebbing ◽  
Marius Kreiss ◽  
Ana Lukic ◽  
Beatrix Suess ◽  
...  

Dicer is a ribonuclease III enzyme in biosynthesis of micro-RNAs (miRNAs). Here we describe a regulation of Dicer expression in monocytic cells, based on proteolysis. In undifferentiated Mono Mac 6 (MM6) cells, full-length Dicer was undetectable; only an ∼50-kDa fragment appeared in Western blots. However, when MM6 cells were treated with zymosan or LPS during differentiation with TGF-β and 1,25diOHvitD3, full-length Dicer became abundant together with varying amounts of ∼170- and ∼50-kDa Dicer fragments. Mass spectrometry identified the Dicer fragments and showed cleavage about 450 residues upstream from the C terminus. Also, PGE2 (prostaglandin E2) added to differentiating MM6 cells up-regulated full-length Dicer, through EP2/EP4 and cAMP. The TLR stimuli strongly induced miR-146a-5p, while PGE2 increased miR-99a-5p and miR-125a-5p, both implicated in down-regulation of TNFα. The Ser protease inhibitor AEBSF (4-[2-aminoethyl] benzene sulfonyl fluoride) up-regulated full-length Dicer, both in MM6 cells and in primary human blood monocytes, indicating a specific proteolytic degradation. However, AEBSF alone did not lead to a general increase in miR expression, indicating that additional mechanisms are required to increase miRNA biosynthesis. Finally, differentiation of monocytes to macrophages with M-CSF or GM-CSF strongly up-regulated full-length Dicer. Our results suggest that differentiation regimens, both in the MM6 cell line and of peripheral blood monocytes, inhibit an apparently constitutive Dicer proteolysis, allowing for increased formation of miRNAs.

1996 ◽  
Vol 109 (7) ◽  
pp. 1795-1801
Author(s):  
B. Panterne ◽  
A. Hatzfeld ◽  
P. Sansilvestri ◽  
A. Cardoso ◽  
M.N. Monier ◽  
...  

We have previously shown that a low concentration of CSF-1 (1 U/ml) can trigger human immature monocytic progenitor proliferation in the presence of low concentrations of IL3 (1.7 U/ml). No c-fms down-regulation was observed during this early cell activation. In contrast, 20 U/ml of CSF-1, active on late monocytic cell growth, down-regulated c-fms mRNA expression in immature progenitors and monocytes derived from bone marrow CD34+ cells in culture. We have now extended this study to include the effects of various concentrations of GM-CSF, IL3 and G-CSF on c-fms expression. We observed that high doses of GM-CSF or IL3 down-modulated c-fms mRNA, whereas low doses of GM-CSF or IL3, which were active on early monocytic growth, had no such effect. Similar results were observed at the protein level. In contrast, whatever the concentration, G-CSF had no effect on c-fms mRNA or protein levels. We further observed that the more immature the c-fms expressing progenitors, the faster the down-modulation of this receptor. This was observed within less than 1 hour for immature bone marrow cells, 6 hours for peripheral blood monocytes and even longer for transformed monocytic cells. These results suggest that oncogene expression can be regulated much more rapidly in immature progenitors than was previously observed in mature cells or transformed cell lines.


1993 ◽  
Vol 70 (03) ◽  
pp. 454-457 ◽  
Author(s):  
Claus Bregengaard ◽  
Ole Nordfang ◽  
Per Østergaard ◽  
Jens G L Petersen ◽  
Giorgio Meyn ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a feed back inhibitor of the initial activation of the extrinsic pathway of coagulation. In humans, injection of heparin results in a 2-6 fold increase in plasma TFPI and recent studies suggest that TFPI may be important for the anticoagulant activity of heparin. Full length (FL) TFPI, but not recombinant two-domain (2D) TFPI, has a poly cationic C-terminus showing very strong heparin binding. Therefore, we have investigated if heparin affects the pharmacokinetics of TFPI with and without this C-terminus.FL-TFPI (608 U/kg) and 2D-TFPI (337 U/kg) were injected intravenously in rabbits with and without simultaneous intravenous injections of low molecular weight heparin (450 anti-XaU/kg).Heparin decreased the volume of distribution and the clearance of FL-TFPI by a factor 10-15, whereas the pharmacokinetics of 2D-TFPI were unaffected by heparin. When heparin was administered 2 h following TFPI the recovery of FL-TFPI was similar to that found in the group receiving the two compounds simultaneously, suggesting that the releasable pool of FL-TFPI is removed very slowly in the absence of circulating heparin.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2248
Author(s):  
Mayra Cecilia Suárez-Arriaga ◽  
Alfonso Méndez-Tenorio ◽  
Vadim Pérez-Koldenkova ◽  
Ezequiel M. Fuentes-Pananá

We previously reported that triple-negative breast cancer (BRCA) cells overexpress the cytokines GM-CSF, G-CSF, MCP-1, and RANTES, and when monocytes were 3-D co-cultured with them, M1-like macrophages were generated with the ability to induce aggressive features in luminal BRCA cell lines. These include upregulation of mesenchymal and stemness markers and invasion. In this study, we stimulated peripheral blood monocytes with the four cytokines and confirmed their capacity to generate protumoral M1-like macrophages. Using the METABRIC BRCA database, we observed that GM-CSF, MCP-1, and RANTES are associated with triple-negative BRCA and reduced overall survival, particularly in patients under 55 years of age. We propose an extended M1-like macrophage proinflammatory signature connected with these three cytokines. We found that the extended M1-like macrophage signature coexists with monocyte/macrophage, Th1 immune response, and immunosuppressive signatures, and all are enriched in claudin-low BRCA samples, and correlate with reduced patient overall survival. Furthermore, we observed that all these signatures are also present in mesenchymal carcinomas of the colon (COAD) and bladder (BLCA). The claudin-low tumor subtype has an adverse clinical outcome and remains poorly understood. This study places M1 macrophages as potential protumoral drivers in already established cancers, and as potential contributors to claudin-low aggressiveness and poor prognosis.


1989 ◽  
Vol 170 (3) ◽  
pp. 865-875 ◽  
Author(s):  
J M Alvaro-Gracia ◽  
N J Zvaifler ◽  
G S Firestein

Granulocyte/macrophage CSF (GM-CSF) has recently been identified in rheumatoid arthritis (RA) synovial effusions. To study a potential role for GM-CSF and other cytokines on the induction of HLA-DR expression on monocytes and synovial macrophages, we analyzed the relative ability of recombinant human cytokines to induce the surface expression of class II MHC antigens on normal peripheral blood monocytes by FACS analysis. GM-CSF (800 U/ml) (mean fluorescence channel 2.54 +/- 0.33 times the control, p less than 0.001) and IFN-gamma (100 U/ml) (5.14 +/- 0.60, p less than 0.001) were the most potent inducers of HLA-DR. TNF-alpha and IL-4 also increased HLA-DR expression, although to a lesser degree [1.31 +/- 0.06 (p less than 0.02) and 1.20 +/- 0.03 (p less than 0.01), respectively]. IL-1 (40 U/ml), IL-2 (10 ng/ml), IL-3 (50 U/ml), IL-6 (100 U/ml), and CSF-1 (1,000 U/ml) did not affect surface HLA-DR density. GM-CSF also increased HLA-DR mRNA expression and surface HLA-DQ expression, but decreased CD14 (a monocyte/macrophage antigen) expression. The effect of GM-CSF on HLA-DR was not mediated by the generation of IFN-gamma in vitro because it was not blocked by anti-IFN-gamma mAb. GM-CSF was additive with IL-4 and low amounts (less than 3 U/ml) of IFN-gamma and synergistic with TNF-alpha. Because we have recently reported that supernatants of cultured RA synovial cells produce a non-IFN-gamma factor that induces HLA-DR on monocytes, we then attempted to neutralize this factor with specific anti-GM-CSF mAb. Four separate synovial tissue supernatants were studied, and the antibody neutralized the HLA-DR-inducing factor in each (p less than 0.01).


1994 ◽  
Vol 68 (6) ◽  
pp. 293-298 ◽  
Author(s):  
F. H. M. Cluitmans ◽  
B. H. J. Esendam ◽  
J. E. Landegent ◽  
R. Willemze ◽  
J. H. F. Falkenburg

2000 ◽  
Vol 74 (19) ◽  
pp. 9028-9038 ◽  
Author(s):  
J.-B. Nousbaum ◽  
S. J. Polyak ◽  
S. C. Ray ◽  
D. G. Sullivan ◽  
A. M. Larson ◽  
...  

ABSTRACT The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein has been controversially implicated in the inherent resistance of HCV to interferon (IFN) antiviral therapy in clinical studies. In this study, the relationship between NS5A mutations and selection pressures before and during antiviral therapy and virologic response to therapy were investigated. Full-length NS5A clones were sequenced from 20 HCV genotype 1-infected patients in a prospective, randomized clinical trial of IFN induction (daily) therapy and IFN plus ribavirin combination therapy. Pretreatment NS5A nucleotide and amino acid phylogenies did not correlate with clinical IFN responses and domains involved in NS5A functions in vitro were all well conserved before and during treatment. A consensus IFN sensitivity-determining region (ISDR237–276) sequence associated with IFN resistance was not found, although the presence of Ala245 within the ISDR was associated with nonresponse to treatment in genotype 1a-infected patients (P < 0.01). There were more mutations in the 26 amino acids downstream of the ISDR required for PKR binding in pretreatment isolates from responders versus nonresponders in both HCV-1a- and HCV-1b-infected patients (P < 0.05). In HCV-1a patients, more amino acid changes were observed in isolates from IFN-sensitive patients (P < 0.001), and the mutations appeared to be concentrated in two variable regions in the C terminus of NS5A, that corresponded to the previously described V3 region and a new variable region, 310 to 330. Selection of pretreatment minor V3 quasispecies was observed within the first 2 to 6 weeks of therapy in responders but not nonresponders, whereas the ISDR and PKR binding domains did not change in either patient response group. These data suggest that host-mediated selective pressures act primarily on the C terminus of NS5A and that NS5A can perturb or evade the IFN-induced antiviral response using sequences outside of the putative ISDR. Mechanistic studies are needed to address the role of the C terminus of NS5A in HCV replication and antiviral resistance.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


2003 ◽  
Vol 2 (6) ◽  
pp. 1274-1287 ◽  
Author(s):  
Kaori Tanabe ◽  
Noriko Ito ◽  
Tomomi Wakuri ◽  
Fumiyo Ozoe ◽  
Makoto Umeda ◽  
...  

ABSTRACT Sla1 is a Schizosaccharomyces pombe homolog of the human La protein. La proteins are known to be RNA-binding proteins that bear conserved RNA recognition motifs (La and RRMs), but their biological functions still have not been fully resolved. In this study, we show that the S. pombe La homolog (Sla1) is involved in regulating sexual development. Sla1 truncated in the C terminus (Sla1ΔC) induced ectopic sporulation in the ras1Δ strain and several other sporulation-deficient mutants. The C terminus contains a nuclear localization signal. While full-length Sla1 localizes in the nucleus, Sla1ΔC is found throughout the cell, suggesting the cytoplasmic localization of Sla1ΔC is involved in its sporulation-inducing activity. Further deletion analysis of Sla1 indicated that a small region (35 amino acids) that includes a portion of RRM2 is sufficient to induce sporulation. The La motif (RRM1) is not involved in this activity. Strikingly, Sla1ΔC induced haploid meiosis in a heterothallic strain, similar to the pat1-114 or mei2-SATA mutation. Sla1ΔC induced sporulation in a mei3 disruptant but not in a mei2 disruptant, indicating that Sla1ΔC requires Mei2 to induce haploid meiosis. Deletion of the chromosomal sla1 gene lowered the temperature sensitivity of the pat1-114 mutant. Two-hybrid analysis indicated that Pat1 interacts with Sla1ΔC but not full-length Sla1. Thus, Sla1ΔC may block Pat1 activity. This block would remove the inhibition on Mei2, which would then drive the cell into haploid meiosis. Finally, Sla1 was degraded prior to the start of meiosis when we monitored Sla1 in cells in which meiosis was synchronously induced. The ability of truncated Sla1 to induce ectopic meiosis represents a very novel function that has hitherto not been suspected for the La family of proteins.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1166 ◽  
Author(s):  
Olivia R. Buonarati ◽  
Peter B. Henderson ◽  
Geoffrey G. Murphy ◽  
Mary C. Horne ◽  
Johannes W. Hell

Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (MR)of the α11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α11.2 expressed in HEK293 cells was conducted using six different region–specific antibodies against α11.2. Results: The full length form of α11.2 migrated, as expected, with an apparent MR of ~250 kDa. A shorter form of comparable prevalence with an apparent MR of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.


Sign in / Sign up

Export Citation Format

Share Document