scholarly journals Trait-based filtering mediates the effects of realistic biodiversity losses on ecosystem functioning

2021 ◽  
Vol 118 (26) ◽  
pp. e2022757118
Author(s):  
Amelia A. Wolf ◽  
Jennifer L. Funk ◽  
Paul C. Selmants ◽  
Connor N. Morozumi ◽  
Daniel L. Hernández ◽  
...  

Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend not only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

2020 ◽  
Author(s):  
Patrick L. Thompson ◽  
Sonia Kéfi ◽  
Yuval R. Zelnik ◽  
Laura E. Dee ◽  
Shaopeng Wang ◽  
...  

AbstractThe biodiversity and ecosystem functioning (BEF) relationship is expected to depend on the spatial or temporal scale at which it is measured. Environmental variation is hypothesized to explain this scale dependence because it influences how quickly biodiversity accumulates with scale. However, this link has yet to be demonstrated in a formal model. Here we use a Lotka-Volterra competition model to simulate community dynamics when environmental conditions vary across either space or time. Species differ in their optimal environmental conditions, which results in turnover in community composition. We vary biodiversity by modelling communities with different sized regional species pools and ask how the amount of biomass per unit area depends on the number of species present, and the spatial or temporal scale at which it is measured. We find that more biodiversity is required to maintain functioning at larger temporal and spatial scales. The number of species required increases quickly when environmental autocorrelation is low, and slowly when autocorrelation is high. Both spatial and temporal environmental variation led to scale dependence in BEF, but autocorrelation had larger impacts when environmental change was temporal. These findings show how the biodiversity required to maintain functioning is expected to increase over time and space.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 913
Author(s):  
Serajis Salekin ◽  
Cristian Higuera Catalán ◽  
Daniel Boczniewicz ◽  
Darius Phiri ◽  
Justin Morgenroth ◽  
...  

Taper functions are important tools for forest description, modelling, assessment, and management. A large number of studies have been conducted to develop and improve taper functions; however, few review studies have been dedicated to addressing their development and parameters. This review summarises the development of taper functions by considering their parameterisation, geographic and species-specific limitations, and applications. This study showed that there has been an increase in the number of studies of taper function and contemporary methods have been developed for the establishment of these functions. The reviewed studies also show that taper functions have been developed from simple equations in the early 1900s to complex functions in modern times. Early taper functions included polynomial, sigmoid, principal component analysis (PCA), and linear mixed functions, while contemporary machine learning (ML) approaches include artificial neural network (ANN) and random forest (RF). Further analysis of the published literature also shows that most of the studies of taper functions have been carried out in Europe and the Americas, meaning most taper equations are not specifically applicable to tropical tree species. Developing well-conditioned taper functions requires reducing the variation due to species, measurement techniques, and climatic conditions, among other factors. The information presented in this study is important for understanding and developing taper functions. Future studies can focus on developing better taper functions by incorporating emerging remote sensing and geospatial datasets, and using contemporary statistical approaches such as ANN and RF.


2018 ◽  
Vol 11 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
Didier M. Roche ◽  
Claire Waelbroeck ◽  
Brett Metcalfe ◽  
Thibaut Caley

Abstract. The oxygen-18 to oxygen-16 ratio recorded in fossil planktonic foraminifer shells has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species generally yield distinct signals, as a consequence of their specific living habitats in the water column and along the year. This complexity is usually not taken into account in model–data integration studies. To overcome this shortcoming, we developed the Foraminifers As Modeled Entities (FAME) module. The module predicts the presence or absence of commonly used planktonic foraminifers and their oxygen-18 values. It is only forced by hydrographic data and uses a very limited number of parameters, almost all derived from culture experiments. FAME performance is evaluated using the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) Late Holocene planktonic foraminifer calcite oxygen-18 and abundance datasets. The application of FAME to a simple cooling scenario demonstrates its utility to predict changes in planktonic foraminifer oxygen-18 to oxygen-16 ratio in response to changing climatic conditions.


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. TANVEER ◽  
M.M. JAVAID ◽  
R.N. ABBAS ◽  
H.H. ALI ◽  
M.Q. NAZIR ◽  
...  

ABSTRACT Catchfly (Silene conoidea), an annual herb, is usually recognized as an emerging weed species in Eurasia and North America. The presence of somatic seed polymorphism might aid in the adaptation of this weed in different climatic conditions. We conducted laboratory and greenhouse experiments to study the seed polymorphism and influence of various environmental factors like temperature, salt stress, osmotic stress and burial depth on the germination and emergence characteristics of catchfly. Optimum germination of seeds of all colors was recorded at a temperature of 15 oC. Germination of catchfly seeds of all colors followed decreasing trend as NaCl concentration increased from 50 mM to 200 mM. Seed germination was maximum (87-96%) at 0 MPa but gradually decreased to 40% as osmotic stress increases up to -0.4 MPa and completely inhibited at 0.6 MPa of all seed colors. A slight increase (from 60 to 95%) in the germination of seeds of black and dark brown colors was observed when seeding depth increased from 0 to 2 cm but decreased when seeding depth increased from 2 to 4 cm in seeds of all colors. There was no emergence of catchfly at seeding depth of 6 cm or greater. Our results concluded that catchfly seeds have the potential to germinate and emerge in various environmental conditions, but germination/emergence percentage of seeds of all colors will be different in different environmental conditions. Soil amendments including deep ploughing may aid for the successful management of this weed in cultivated areas.


2018 ◽  
Vol 15 (16) ◽  
pp. 5189-5202 ◽  
Author(s):  
Gustaf Granath ◽  
Håkan Rydin ◽  
Jennifer L. Baltzer ◽  
Fia Bengtsson ◽  
Nicholas Boncek ◽  
...  

Abstract. Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue δ18O tracks the δ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in δ13C values between species. For S. magellanicum δ13C decreased with increasing height above the water table (HWT, R2=17 %) and was positively correlated to productivity (R2=7 %). Together these two variables explained 46 % of the between-site variation in δ13C values. For S. fuscum, productivity was the only significant predictor of δ13C but had low explanatory power (total R2=6 %). For δ18O values, approximately 90 % of the variation was found between sites. Globally modelled annual δ18O values in precipitation explained 69 % of the between-site variation in tissue δ18O. S. magellanicum showed lower δ18O enrichment than S. fuscum (−0.83 ‰ lower). Elevation and climatic variables were weak predictors of tissue δ18O values after controlling for δ18O values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue δ18O values from modelled annual δ18O values in precipitation, and (b) the possibility of relating tissue δ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.


Algologia ◽  
2020 ◽  
Vol 30 (4) ◽  
pp. 440-451
Author(s):  
M. Shamina ◽  

Cyanobacteria are organisms which play a vital role in various molecular and biotechnological aspects in food industry, agriculture, pharmaceuticals, neutraceuticals, biofuel production, etc., it is necessary to understand its adaptability to various environmental conditions. Furthermore it is equally important to discover new cyanobacterial taxa and with it occasional changes in taxonomic classification, thus the author set out to study cyanobacteria in extreme climatic conditions of desert, where temperatures are mostly above 45 oC. The taxonomic composition of cyanobacteria of Masirah Island, Sultanate of Oman, was studied for the first time. The studied samples were collected during the period of 2017–2019. The ten samples belonged to two orders: Oscillatoriales Schaffner and Synechococcales L.Hoffmann, Komárek & J.Kastovsky. All of them were filamentous non-heterocyst forms. Three species belonged to the genus Leptolyngbya Anagn. & Komárek, the genera Oscillatoria Vaucher ex Gomont and Lyngbya C.Agardh ex Gomont were represented by two species each, while the genera Pseudanabena Lauterborn, Planktolyngbya Anagn. & Komárek and Geitlerinema (Anagn. & Komárek) Anagn. were one species.


2019 ◽  
Vol 46 (1) ◽  
pp. 16-23
Author(s):  
Jan Kavan ◽  
Veronika Anděrová

AbstractA new non-invasive method based on picture analysis was used to estimate the conditions in Svalbard reindeer populations. The well-being of an individual subject is often expressed through visual indices. Two distinct reindeer populations were compared based on their antler parameters. Relative antler size and number of tines are variables supposed to reflect correspondingly the environmental conditions of sedentary populations within the growing season. The occurrence areas of two studied populations are distinctly isolated – separated with high mountain ridges, glaciers and fjords. The population in Petuniabukta occupies a sparsely vegetated region with harsh climatic conditions, whereas Skansbukta represents an area with continuous tundra vegetation cover, milder climatic conditions and, consequently, also a longer vegetation season. These environmental factors probably caused significant differences in the relative antler size and number of tines in the studied species. The Skansbukta population exhibited a larger relative antler size and higher number of tines than the population in Petuniabukta (both parameters differed significantly, p < 0.01). This difference reflects concisely the different environmental conditions of both locations. A comparison of Skansbukta population antler characteristics between years 2017 and 2018 did not reveal significant changes, most probably due to very similar atmospheric conditions in these two years (in terms of air temperature).


Geologos ◽  
2016 ◽  
Vol 22 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Danuta Drzymulska

Abstract A review of literature data on the degree of peat decomposition – an important parameter that yields data on environmental conditions during the peat-forming process, i.e., humidity of the mire surface, is presented. A decrease in the rate of peat decomposition indicates a rise of the ground water table. In the case of bogs, which receive exclusively atmospheric (meteoric) water, data on changes in the wetness of past mire surfaces could even be treated as data on past climates. Different factors shaping the process of peat decomposition are also discussed, such as humidity of the substratum and climatic conditions, as well as the chemical composition of peat-forming plants. Methods for the determination of the degree of peat decomposition are also outlined, maintaining the division into field and laboratory analyses. Among the latter are methods based on physical and chemical features of peat and microscopic methods. Comparisons of results obtained by different methods can occasionally be difficult, which may be ascribed to different experience of researchers or the chemically undefined nature of many analyses of humification.


2021 ◽  
Author(s):  
Michelle Viswanathan ◽  
Tobias KD Weber ◽  
Andreas Scheidegger ◽  
Thilo Streck

&lt;p&gt;Crop models are used to evaluate the impact of climate change on food security by simulating plant phenology, yield, biomass and leaf area index. Plant phenology defines the timing of crucial growth stages and physiological processes that influence organ appearance and assimilate partitioning. It is governed by environmental factors such as solar radiation, temperature and water availability. Plant phenology is not only specific for the crop species, but also depends on the cultivar. Additionally, growth of a cultivar could vary depending on the environment. Common crop models cannot fully capture the influence of the environment on phenology, resulting in cultivar-specific parameters that are environment-dependent. These parameter estimates may be unreliable in case of limited data. Moreover, crucial species-specific information is ignored. On the other hand, in large regional-scale models covering multiple cultivars and environments, information about the cultivars grown is generally not available. In this case, a shared set of parameters for the crop species would suppress within-species differences leading to unreliable predictions.&lt;/p&gt;&lt;p&gt;A Bayesian hierarchical framework enables us to alleviate these problems by honouring the multi-level data structure. Additionally, we can reflect the uncertainty from different sources, for example, model inputs and measurements. In this study we implement a Bayesian hierarchical framework to estimate parameters of the Soil-Plant-Atmosphere System Simulation (SPASS) model for simulating phenological development of different cultivars of silage maize grown over all the contrasting climatological regions of Germany.&lt;/p&gt;&lt;p&gt;We used data from the German weather service on the phenological development stages of silage maize grown across Germany between 2009 and 2019. During this period, silage maize was grown in over 3000 unique location-year combinations. Maize crops were differentiated into early, mid-early, mid-late and late ripening groups and were further classified into cultivars within each ripening group. Within the hierarchical framework, we estimate maize species-specific parameters as well as parameters per ripening group and cultivar, through Bayesian model calibration. We analyse the influence of environmental conditions on parameter estimates, to further develop the hierarchical structure. We perform cross-validation to assess the prediction quality of the parameterized model.&lt;/p&gt;&lt;p&gt;With this approach, we show that robust parameter estimates account for differences between cultivars, ripening groups as well as different environmental conditions. The parameterized model can be used for large-scale phenology predictions of silage maize grown across Germany. These parameter estimates may perform better than independent species- or cultivar-specific estimates, in predicting phenology of future cultivars where specific cultivar characteristics are not known.&lt;/p&gt;


2021 ◽  
Author(s):  
A.L. Maksimov

The paper considers modern approaches to the zoning of territories and the selection of people for life in extreme environmental conditions, taking into account modern geopolitical challenges. It is shown that it is possible, based on the allostasis concept, to conduct not only the selection of persons with a high level of nonspecific resistance, but also to quantify the degree of extremity of environmental factors using the standard represpiration test. Key words: adaptation, extreme conditions, selection, hypoxia, cold, rerespiration, allostatic load.


Sign in / Sign up

Export Citation Format

Share Document