scholarly journals Association of improved air quality with lower dementia risk in older women

2022 ◽  
Vol 119 (2) ◽  
pp. e2107833119
Author(s):  
Xinhui Wang ◽  
Diana Younan ◽  
Joshua Millstein ◽  
Andrew J. Petkus ◽  
Erika Garcia ◽  
...  

Late-life ambient air pollution is a risk factor for brain aging, but it remains unknown if improved air quality (AQ) lowers dementia risk. We studied a geographically diverse cohort of older women dementia free at baseline in 2008 to 2012 (n = 2,239, aged 74 to 92). Incident dementia was centrally adjudicated annually. Yearly mean concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using regionalized national universal kriging models and averaged over the 3-y period before baseline (recent exposure) and 10 y earlier (remote exposure). Reduction from remote to recent exposures was used as the indicator of improved AQ. Cox proportional hazard ratios (HRs) for dementia risk associated with AQ measures were estimated, adjusting for sociodemographic, lifestyle, and clinical characteristics. We identified 398 dementia cases during follow up (median = 6.1 y). PM2.5 and NO2 reduced significantly over the 10 y before baseline. Larger AQ improvement was associated with reduced dementia risks (HRPM2.5 0.80 per 1.78 μg/m3, 95% CI 0.71–0.91; HRNO2 0.80 per 3.91 parts per billion, 95% CI 0.71–0.90), equivalent to the lower risk observed in women 2.4 y younger at baseline. Higher PM2.5 at baseline was associated with higher dementia risk (HRPM2.5 1.16 per 2.90 μg/m3, 95% CI 0.98–1.38), but the lower dementia risk associated with improved AQ remained after further adjusting for recent exposure. The observed associations did not substantially differ by age, education, geographic region, Apolipoprotein E e4 genotypes, or cardiovascular risk factors. Long-term AQ improvement in late life was associated with lower dementia risk in older women.

2017 ◽  
Vol 1 (suppl_1) ◽  
pp. 632-632
Author(s):  
J. Chen ◽  
X. Wang ◽  
R. Casanova ◽  
M.L. Serre ◽  
W. Vizuete ◽  
...  

2020 ◽  
Author(s):  
Ramachandran Subramanian ◽  
Matthias Beekmann ◽  
Carl Malings ◽  
Anais Feron ◽  
Paola Formenti ◽  
...  

<p>Ambient air pollution is a leading cause of premature mortality across the world, with an estimated 258,000 deaths in Africa (UNICEF/GBD 2017). These estimated impacts have large uncertainties as many major cities in Africa do not have any ground-based air quality monitoring. The lack of data is due in part to the high cost of traditional monitoring equipment and the lack of trained personnel. As part of the “Make Air Quality Great Again” project under the “Make Our Planet Great Again” framework (MOPGA), we propose filling this data gap with low-cost sensors carefully calibrated against reference monitors.</p><p>Fifteen real-time affordable multi-pollutant (RAMP) monitors have been deployed in Abidjan, Côte d'Ivoire; Accra, Ghana; Kigali, Rwanda; Nairobi, Kenya; Niamey, Niger; and Zamdela, South Africa (near Johannesburg). The RAMPs use Plantower optical nephelometers to measure fine particulate matter mass (PM<sub>2.5</sub>) and four Alphasense electrochemical sensors to detect pollutant gases including nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>).</p><p>Using a calibration developed in Créteil, France, the deployments thus far reveal morning and evening spikes in combustion-related air pollution. The median hourly NO<sub>2</sub> in Accra and Nairobi for September-October 2019 was about 11 ppb; a similar value was observed across November-December 2019 in Zamdela. However, a previous long-term deployment of the RAMPs in Rwanda showed that, for robust data quality, low-cost sensors must be collocated with traditional reference monitors to develop localized calibration models. Hence, we acquired regulatory-grade PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub> monitors for Abidjan and Accra. We also collocated RAMPs with existing reference monitors in Zamdela, Kigali, Abidjan, and Lamto (a rural site in Côte d'Ivoire). In this talk, we will present results on spatio-temporal variability of collocation-based sensor calibrations across these different cities, source identification, and challenges and plans for future expansion.</p>


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 341-341
Author(s):  
Andrew Petkus ◽  
Xinhui Wang ◽  
Diana Younan ◽  
Daniel Beavers ◽  
Mark Espeland ◽  
...  

Abstract Air pollution exposure is an environmental risk factor in brain aging and may also be associated with late-life depressive symptoms (DS). It is unknown if air quality (AQ) improvement is associated with reductions in DS in later life. Longitudinal data from 917 cognitively intact women with no prior history of depression (baseline age 66.4 ± 1.6 years old) participating in the Women’s Health Initiative Memory Study of Younger Women (WHIMSY; 2008-2016) were analyzed to examine whether AQ improvement over the 5-years prior to WHIMSY baseline was associated with trajectories of DS (measured by 15-item Geriatric Depression Scale). Annual PM2.5 (fine particulate matter of aerodynamic diameter <2.5) and NO2 were estimated at the participants’ residence using regionalized universal kriging models. Estimates were aggregated to the 3-year average at 5 years (remote) and immediately (recent) before WHIMSY baseline. Associations between AQ improvement (difference between remote to recent exposure) and trajectories of DS were estimated using linear mixed effect models, adjusting for sociodemographic, lifestyle, and clinical covariates. AQ improved prior to baseline (PM2.5: 1.62 ± 1.45 μg/m3 and NO2: 3.70 ± 2.81 ppb). Women residing in locations with greater improvement in NO2 (per IQR = 4.34 ppb) or PM2.5 (per IQR = 2.30 μg/m3) reported significant annual reductions in DS (βNO2=3.1%, p=.046; βPM25=1.6%, p=.046), similar to the effect of engaging in moderate to vigorous physical activity four times or more a week. These findings suggest that improving air quality may reduce depressive symptoms in older women.


2018 ◽  
Author(s):  
Ju Chunyan ◽  
Zhang Zili ◽  
Zhou Xu ◽  
He Qing

Abstract. Ambient air pollution has been implicated as a major environmental problem in Urban development process. The objective of this publication is to analyse deeply the correlation coefficient of PM2.5 and AOD and aerosol optical depth (AOD). Surface PM2.5 observation data and AOD were investigated from March to June in 2015 and 2016. Hourly PM2.5 data are sampled from air quality monitoring stations in Hotan oasis. The AOD data are derived from Terra and Aqua at 10 km resolution. The satellite passed the area at about 13:30 AM and 15:30 PM,respectively.By using the matched PM2.5 and AOD data,the spatial and temporal distribution characteristics are discussed, and the correlation coefficient of PM2.5 versus AOD are estimated. The results show that PM2.5 mass concentration and AOD vary greatly in different pollution weather. This phenomenon may be associated with data collection time, and other meteorological factors. Regression analysis based on typical air pollution show subsection fitting effect is relatively good choice, and regression is relatively well in Hazardous and serious pollution weather. Fitting analysis is good for PM2.5 in different level of air pollution, and sources and pollutants transmission have difference.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 678
Author(s):  
Adeeba Al-Hurban ◽  
Sawsan Khader ◽  
Ahmad Alsaber ◽  
Jiazhu Pan

This study aimed to examine the trend of ambient air pollution (i.e., ozone (O3), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), benzene (C6H6) and particulate matter with an aerodynamic diameter smaller than 10 microns (PM10), and non-methane hydrocarbons (NMHCs) at 10 monitoring stations located in the main residential and industrial areas in the State of Kuwait over 6 years (2012–2017). We found that the SO2 level in industrial areas (0.065 ppm) exceeded the allowable range of SO2 in residential areas (0.030 ppm). Air pollution variables were defined by the Environmental Public Authority of Kuwait (K-EPA). In this study, integrated statistical analysis was performed to compare an established air pollution database to Kuwait Ambient Air Quality Guidelines and to determine the association between pollutants and meteorological factors. All pollutants were positively correlated, with the exception of most pollutants and PM10 and O3. Meteorological factors, i.e., the ambient temperature, wind speed and humidity, were also significantly associated with the above pollutants. Spatial distribution mapping indicated that the PM10 level remained high during the southwest monsoon (the hot and dry season), while the CO level was high during the northeast monsoon (the wet season). The NO2 and O3 levels were high during the first intermonsoon season.


2020 ◽  
Vol 2 (1) ◽  
pp. 585-614
Author(s):  
Caleb E. Finch ◽  
Todd E. Morgan

Brain development is impaired by maternal exposure to airborne toxins from ambient air pollution, cigarette smoke, and lead. Shared postnatal consequences include gray matter deficits and abnormal behaviors as well as elevated blood pressure. These unexpectedly broad convergences have implications for later life brain health because these same airborne toxins accelerate brain aging. Gene-environment interactions are shown for ApoE alleles that influence the risk of Alzheimer disease. The multigenerational trace of these toxins extends before fertilization because egg cells are formed in the grandmaternal uterus. The lineage and sex-specific effects of grandmaternal exposure to lead and cigarettes indicate epigenetic processes of relevance to future generations from our current and recent exposure to airborne toxins.


2014 ◽  
Vol 567 ◽  
pp. 3-7 ◽  
Author(s):  
Nurul Izma Mohammed ◽  
Nurfadhilah Othman ◽  
Khairul Bariyah Baharuddin

Complaints on poor air quality in an enclosed car park have been raised up among the public, which might cause serious health effects to the drivers, passengers, and labours who are working at the premises. Improper design of mechanical ventilation systems in a car park would result in a poor indoor environment. The exhaust emission of motor vehicle contains a variety of potentially harmful substances encompassing carbon monoxide, nitrogen oxides, sulphur dioxide, hydrocarbons, and fine particulates. In Kuala Lumpur, there is a great demand but a short supply of lands and building spaces. Thus, a large multi-storey underground car parks is a common solution for both, the government and developers. Although the health effects of the motor vehicle emissions and ambient air pollution are already known, but due to the nature of enclosed multi-storey car parks, these health risks are predicted to be intensified. Thus, it is crucial to investigate and evaluate the status of the air pollution in the enclosed car parks with emphasis on sulphur dioxide (SO2) and nitrogen dioxides (NO2). Samples were collected in one of the famous shopping malls in Kuala Lumpur using a GrayWolf Advanced Sense Direct Sense; Toxic Gas Test Meters from 8 am until 5 pm on weekdays and weekends. The results demonstrate that the concentrations of SO2 and NO2 on weekends is higher than weekdays. Besides, the concentrations for both weekdays and weekends have exceeded the standard limit set by the Malaysian Ambient Air Quality Guideline (MAAQG).


2020 ◽  
Author(s):  
Kenza Khomsi ◽  
Houda Najmi ◽  
Hassan Amghar ◽  
Youssef Chelhaoui ◽  
Zineb Souhaili

AbstractOn the 20th April 2020, the end date of the first strict lockdown period in Morocco, 2 403 410 cases of the corona Virus were confirmed globally. The number of Morocco confirmed cases attended 2990, while 12 746 were suspected and 143 deaths were recorded. Due to the pandemic of coronavirus disease 2019 worldwide and in Morocco, almost all avoidable activities in the country were prohibited since the kingdom announced activities reduction on March 16, 2020 and then general lockdown with reduced industrial activities on March 20, 2020.This study aims at comparing the air quality status in Casablanca and Marrakech, two large cities from Morocco, before the pandemic and during the lockdown situation to show whether COVID-19 compelled-anthropogenic activities lockdown may have saved lives by restraining ambient air pollution than by preventing infection.We found that, during the quarantine, NO2 dropped by -12 μg/m3 in Casablanca and -7 μg/m3 in Marrakech. PM2·5 dropped by -18 μg/m3 in Casablanca and -14 μg/m3 in Marrakech. CO dropped by -0.04 mg/m3 in Casablanca and -0.12 mg/m3 in Marrakech. This air pollution reduction had created human health benefits and had reduced mortality and saved lives mainly from cardiovascular diseases.


2016 ◽  
Vol 26 (1) ◽  
pp. 21-28 ◽  
Author(s):  
G.T. Feig ◽  
S. Naidoo ◽  
N. Ncgukana

The Waterberg Priority Area ambient air quality monitoring network was established in 2012 to monitor the ambient air quality in the Waterberg Air Quality Priority Area. Three monitoring stations were established in Lephalale, Thabazimbi and Mokopane. The monitoring stations measure the concentrations of PM10, PM2.5, SO2, NOx, CO, O3, BTEX and meteorological parameters. Hourly data for a 31 month period (October 2012-April 2015) was obtained from the South African Air Quality Information System (SAAQIS) and analysed to assess patterns in atmospheric concentrations, including seasonal and diurnal patterns of the ambient concentrations and to assess the impacts that such reported pollution concentration may have. Local source regions for SO2, PM10, PM2.5 and O3 were identified and trends in the recorded concentrations are discussed.


Sign in / Sign up

Export Citation Format

Share Document