scholarly journals Preparation of an experimental low-fluoride diet from single-cell organisms for rats and mice

1980 ◽  
Vol 44 (3) ◽  
pp. 371-380 ◽  
Author(s):  
S. A. Khalawan ◽  
J. C. Elliott ◽  
R. W. Fearnhead

1. A method for producing a standard low-fluoride diet from a green alga and yeast is described. Chlorella pyrenoidosa was grown in a culture medium prepared with distilled water and analytical grade chemical salts. The spent culture medium from the alga culture was reclaimed and replenished with salts and sucrose for the production of yeast, Saccharomyces cerevisiae.2. The single-cell organisms were separated by centrifugation from their culture media and the dried cells were blended with sucrose, maize oil, cellulose and a salt mix to produce diet pellets for rats and mice.3. The diet was readily accepted as food by rats and mice and it was found to contain 100–300 μg fluoride/kg dry weight. Two generations of rats and four generations of mice were bred on this diet.4. The use of hydroxyapatite to reduce the fluoride content of the chemicals used in the production of the alga and yeast biomass was investigated. Diet pellets prepared with this biomass contained 45–60 μg fluoride/kg dry weight.

Nativa ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Marcos Vinícius Marques Pinheiro ◽  
Ana Cristina Portugal Pinto De Carvalho ◽  
Fabrina Bolzan Martins

No intuito de elevar as taxas de sobrevivência durante a etapa de aclimatização e posterior plantio a campo, avaliou-se o enraizamento in vitro de bananeira cv. Pacovan, em diferentes concentrações de sais MS e de sacarose. Utilizou-se DIC, esquema fatorial (6x2x3), com seis meios de cultura [sendo três concentrações de nutrientes do meio MS (100%; 50% de macronutrientes; e 50% dos sais macro e micronutrientes), e duas concentrações de sacarose (1,5/3,0%)], dois fotoperíodos (12/16 h) e três tempos de cultivo (21, 28 ou 35 dias) e seis repetições/tratamento. Analisaram-se: altura da planta, número de folhas/planta, massas frescas e secas das partes aérea e radicular. Para altura da planta, massa fresca da parte aérea e radicular, o meio MS 50% dos sais + sacarose (1,5%) com fotoperíodo de 16 h e tempo de cultivo de 35 dias foi satisfatório. Para massa seca da parte aérea foi MS 50% de sais + sacarose (3%), e para massa seca da parte radicular, MS 100% + sacarose (3%) (em 12hs/28 dias e 16hs/21 dias). Para o alongamento/enraizamento in vitro da bananeira cv. Pacovan sugere-se MS 50% de sais (macro e micronutrientes), redução ou manutenção de sacarose (1,5 ou 3%) em 16h/35 dias de cultivo.Palavra-chave: Musa spp., propagação in vitro, sistema radicular. CHANGES IN CULTURE MEDIUM, PHOTOPERIOD AND TIME OF CULTIVATION AFFECT THE IN VITRO ELONGATION AND ROOTING OF BANANA CV. PACOVAN ABSTRACT:In order to achieve high rates of survival during the acclimatization and later planting in the field, was evaluated the in vitro of banana cv. Pacovan plants under different concentrations of sucrose and MS basal salt mixture. The experiment was assembled in a DIC, in 6x2x3, six different culture media [three different MS salt mixture concentrations (100%; 50% of macronutrients; and 50% of macro/micronutrients) and two sucrose concentrations (1.5/3%)], two photoperiods (12/16 hours) and three cultivation times (21, 28 or 35 days). Each treatment was composed by 6 replicates. Plant height, number of leaves/plant, fresh and dry weight of roots and shoots, were analyzed. Satisfactory results for plant height and shoot and root fresh biomass were observed in MS with macro/micronutrients (50%) + sucrose (3%), 16 hours/35 days. The highest values of shoot dry weight were observed in MS with macro/micronutrients (50%) + sucrose (3%); the highest root dry weight was achieved with MS 100% + sucrose (3%) (12hs/28 and 16hs/21 days). The suggested medium for the in vitro elongation and rooting stage of banana cv. Pacovan is the MS with 50% of salts (macro and micronutrients), reduction or maintenance of sucrose (1.5 or 3%) in 16h/35 days of cultivation.Keywords: Musa spp., in vitro propagation, root system. DOI:


2020 ◽  
Vol 80 (4) ◽  
pp. 914-920 ◽  
Author(s):  
L. H. Sipaúba-Tavares ◽  
B. Scardoeli-Truzzi ◽  
D. C. Fenerick ◽  
M. G. Tedesque

Abstract Growth and biological conditions of Messastrum gracile were evaluated to compare the effect of photoautotrophic and mixotrophic cultivation on the increase of biomass production and chemical conditions cultured in macrophyte and commercial culture media. The growth rate (k) of M. gracile was different in the culture media, higher in mixotrophic cultivation for Lemna minor culture medium, whilst to Eichhornia crassipes and NPK culture media were higher in photoautotrophic cultivation. Mean lipid contents in photoautotrophic cultivation were 8.2% biomass dry weight, whereas they reached 19% biomass dry weight in mixotrophic cultivation. Protein contents were below 48% biomass dry weight in photoautotrophic cultivation and 30% biomass dry weight in mixotrophic cultivation. Messastrum gracile cultured in macrophyte culture media (E. crassipes and L. minor) and NPK culture medium provided satisfactory results with regard to lipid and protein contents in mixotrophic and photoautotrophic cultivations, respectively. Lipid and protein contents in alternative media were higher or similar to the CHU12 commercial culture medium.


2021 ◽  
Author(s):  
Monika Jach ◽  
Konrad Kubiński ◽  
Ewa Sajnaga ◽  
Marek Juda ◽  
Anna Malm

Abstract Background Yarrowia lipolytica is an oleaginous yeast with the ability to grow in a variety of hydrophilic and hydrophobic substrates, including industrial wastes, in which it produces and accumulates various nutrients. Methods The aim of the present study was to examine the presence of free L-carnitine in the biomasses of two Yarrowia lipolytica strains (ATCC 9793 and A-101) growing in YPD medium and biofuel waste. The cultivations of Y. lipolytica were performed in aerobic conditions at different temperatures (20–30°C) and pH values (4.0–7.0) of the media with and without the addition of precursors for L-carnitine production, such us iron, trimethyllysine, and L-ascorbic acid in a laboratory scale or chromium chloride (III) in a pilot plant scale. Results Both tested Y. lipolytica strains grown in fatty acid-poor YPD medium at 20°C and pH 6.0 contained endogenous free L-carnitine in their biomass with a maximum of 22.85 mg/100 g of wet biomass. The addition of L-carnitine precursors to the YPD medium exerted a significant effect on L-carnitine concentration in the yeast biomass, increasing it up to 250%. In turn, the biomass of both tested Y. lipolytica strains cultivated in the biofuel waste, irrespective of the culture conditions, contained below 1 mg of L-carnitine/100 g of wet biomass. However, the supplementation of the culture media with the L-carnitine precursors significantly increased the yield of the yeast biomass by 20–30% in the biofuel waste cultures. Moreover, the addition of chromium(III) chloride into the biofuel waste caused an increase in the free L-carnitine concentration in the yeast biomass up to 2.24 mg/100 g of dry weight. Conclusion Biomass of Y. lipolytica grown in the free fat medium contained free L-carnitine, in contrast to the biomass grown in the fat-rich biofuel waste. The very low amounts of L-carnitine in the biomass of Y. lipolytica grown in the crude biofuel waste suggest that the yeast is able to utilize almost the entire pool of free L-carnitine for growth and nutritional biomass production. However, the addition of chromium to the biofuel waste contributed to an increase in L-carnitine concentration in Y. lipolytica biomass.


2012 ◽  
Vol 30 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Armando R Tavares ◽  
Jorge Luiz M Young ◽  
Sandra S Ori ◽  
Shoey Kanashiro ◽  
Giuseppina PP Lima ◽  
...  

In vitro cultivation is the main propagation method for the family Orchidaceae, whereas nitrogen is the most important nutrient in the culture media. This work was carried out to study the influence of different nitrogen concentrations on the in vitro growth of the orchid Phalaenopsis amabilis. Nitrogen concentrations varied by altering the ionic balance of the Murashige & Skoog (MS) culture medium. Plants, 360 days old, were cultivated in liquid MS, modified with 7.5, 15, 30, 45, and 60 mM N. After 180 days, we assessed plant and root length, number of leaves and roots, and fresh and dry weight of leaves, roots and plants. Treatments were assigned to completely randomized plots, with four replications. Plots consisted of five three-plant flasks. The lowest nitrogen level (7.5 mM) in the medium induced root development in length, number, and fresh and dry weight. The concentration 30 mM N stimulated both emission and dry weight accumulation of leaves. The original nitrogen concentration in the MS medium (60 mM) was excessive for the in vitro growth of P. amabilis.


1965 ◽  
Vol 11 (4) ◽  
pp. 625-628 ◽  
Author(s):  
H. G. Osman ◽  
M. S. Chenouda

The major amount of riboflavin is formed when the mycelia reach a mature stage and the major carbon source is almost exhausted. While the riboflavin is being synthesized in larger quantities, the mycelial dry weight, the total nitrogen, and total lipid content decrease. The mobilized cell reserves may be those components which call upon the biosynthesis of the major amount of the vitamin. At the stage of growth where glucose is almost completely utilized an increase in the excretion of pyruvic and lactic acids from the mycelia into the culture medium occurs. This may partly explain the increase in the acidity of the culture medium at that stage.


2021 ◽  
Author(s):  
Monika Elżbieta Jach ◽  
Konrad Kubiński ◽  
Marek Juda ◽  
Ewa Sajnaga ◽  
Tomasz Baj ◽  
...  

Abstract Background Yarrowia lipolytica is an oleaginous yeast with the ability to grow in a variety of hydrophilic and hydrophobic substrates, including industrial wastes, in which it produces and accumulates various nutrients. Methods The aim of the present study was to examine the presence of free L-carnitine in the biomasses of two Yarrowia lipolytica strains (A-101 and ATCC 9793) growing in biofuel waste and YPD medium. The cultivations of Y. lipolytica were performed in aerobic conditions at different temperatures (20–30°C) and pH values (4.0–7.0) of the media with and without the addition of precursors for L-carnitine production (trimethyllysine, iron, and L-ascorbic acid) in a laboratory scale or other substances (chromium, selenite, or zinc) in a pilot plant scale. Results Both tested Y. lipolytica strains grown in fatty acid-poor YPD medium contained endogenous free L-carnitine in their biomass with a maximum of 22.85 mg/100 g of wet biomass. The addition of L-carnitine precursors to the YPD medium exerted a significant effect on L-carnitine concentration in the yeast biomass, increasing it up to 250%. In turn, the biomass of both tested Y. lipolytica strains cultivated in the biofuel waste, irrespective of the culture conditions, contained below 1 mg of L-carnitine/100 g of wet biomass. However, the supplementation of the culture media with the L-carnitine precursors significantly increased the yield of the yeast biomass by 20–30% in the non-fermentable biofuel waste cultures. Moreover, the addition of chromium (III) chloride into the biofuel waste caused an increase in the free L-carnitine concentration in the yeast biomass up to 2.24 mg/100 g of dry weight. Conclusion Biomass of Y. lipolytica grown in the fat-poor medium contained free L-carnitine, in contrast to the biomass grown in the fat-rich biofuel waste. The very low amounts of L-carnitine in the biomass of Y. lipolytica grown in the crude biofuel waste suggest that the yeast is able to utilize almost the entire pool of free L-carnitine for growth and nutritional biomass production. However, the addition of chromium to the biofuel waste contributed to an increase in L-carnitine concentration in Y. lipolytica biomass.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506d-506
Author(s):  
Robert R. Tripepi ◽  
Holly J. Schwager ◽  
Mary W. George ◽  
Joseph P. McCaffrey

Two insecticides, acephate or azadirachtin, were added to tissue culture media to determine their effectiveness in controlling onion thrips (Thrips tabaci Lindeman.) and to determine if these insecticides could damage the plant shoot cultures. To test for insecticide phytotoxicity, microshoots from European birch (Betula pendula), American elm (Ulmus americana), `Pink Arola' chrysanthemum (Dendranthema grandiflora), `America' rhododendron (Rhododendron catawbiense), `Golden Emblem' rose (Rosa hybrida), and `Gala' apple (Malus domestica) were placed in 130-ml baby food jars containing 25 ml of medium supplemented with 6.5, 13, or 26 mg/l Orthene® (contained acephate) or 0.55, 1.1, or 2.2 ml/l Azatin® (contained azadirachtin). Control jars lacked insecticide. To test for thrips control, 13 mg/l Orthene® or 0.55 ml/l Azatin® was added to Murashige and Skoog medium, and 10 thrips were placed on `Gala' apple microshoots in each jar. Jars were sealed with plastic wrap. In both studies, microshoot dry weight and heights were determined. In the second study, the total number of thrips per jar was also determined 3 weeks after inoculation. Microshoots on Orthene®-treated media lacked phytotoxicity symptoms, regardless of the concentration used. In contrast, Azatin® hindered plant growth, decreasing shoot height or dry weight by up to 85% depending on the species. Both insecticides prevented thrips populations from increasing, since less than 10 thrips were found in jars with insecticide-treated medium. Control jars, however, contained an average of almost 70 thrips per jar. This study demonstrated that both Orthene® and Azatin® were effective for eradicating thrips from plant tissue cultures, but Orthene® should probably be used because Azatin® was phytotoxic to all species tested.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 378
Author(s):  
Van-Tuyen Le ◽  
Samuel Bertrand ◽  
Thibaut Robiou du Pont ◽  
Fabrice Fleury ◽  
Nathalie Caroff ◽  
...  

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives—5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1’R, 2’S)-LL-P880β (3), 5,6-dihydro-4-methoxy-6S-(1’S, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1’R, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)—together with the known (6S, 1’S, 2’S)-LL-P880β (2), (1’R, 2’S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1’S, 2’R)-LL-P880β (9), (6S, 1’S)-pestalotin (10), 1’R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 310
Author(s):  
Fabian Sandgruber ◽  
Annekathrin Gielsdorf ◽  
Anja C. Baur ◽  
Benjamin Schenz ◽  
Sandra Marie Müller ◽  
...  

The nutrient composition of 15 commercially available microalgae powders of Arthrospira platensis, Chlorella pyrenoidosa and vulgaris, Dunaliella salina, Haematococcus pluvialis, Tetraselmis chuii, and Aphanizomenon flos-aquae was analyzed. The Dunaliella salina powders were characterized by a high content of carbohydrates, saturated fatty acids (SFAs), omega-6-polyunsaturated fatty acids (n6-PUFAs), heavy metals, and α-tocopherol, whereas the protein amounts, essential amino acids (EAAs), omega-3-PUFAs (n3-PUFAs), vitamins, and minerals were low. In the powder of Haematococcus pluvialis, ten times higher amounts of carotenoids compared to all other analyzed powders were determined, yet it was low in vitamins D and E, protein, and EAAs, and the n6/n3-PUFAs ratio was comparably high. Vitamin B12, quantified as cobalamin, was below 0.02 mg/100 g dry weight (d.w.) in all studied powders. Based on our analysis, microalgae such as Aphanizomenon and Chlorella may contribute to an adequate intake of critical nutrients such as protein with a high content of EAAs, dietary fibers, n3-PUFAs, Ca, Fe, Mg, and Zn, as well as vitamin D and E. Yet, the nutritional value of Aphanizomenon flos-aquae was slightly decreased by high contents of SFAs. The present data show that microalgae are rich in valuable nutrients, but the macro- and micronutrient profiles differ strongly between and within species.


Sign in / Sign up

Export Citation Format

Share Document