Nest density, spatial distribution, and bionomy of Trigona spinipes (Apidae: Meliponini)

Author(s):  
Edigleidson Fideles Valadares ◽  
Airton Torres Carvalho ◽  
Celso Feitosa Martins
Sociobiology ◽  
2015 ◽  
Vol 62 (3) ◽  
pp. 340 ◽  
Author(s):  
Mariane Aparecida Nickele ◽  
Wilson Reis Filho

This work aimed to study the population dynamics of Acromyrmex crassispinus (Forel) in Pinus taeda L. plantations, evaluating the density and spatial distribution of nests over time, inferring about the period of the first nuptial flight of A. crassispinus colonies, and evaluating the levels of attack of this leaf-cutting ant on P. taeda plants. Assessments were performed monthly in the first year after planting, every three months until the third year and every six months until the plantation was six years old. The presence of nests was observed only after 15 months after planting. The nest density gradually increased until the planting completed 30 months, and decreased when the forest canopy began to close (after 54 months). Spatial distribution of A. crassispinus nests was random. Probably, the first nuptial flight of an A. crassispinus colony occurs after the third year of the colony foundation. Pinus taeda plants were not attacked by A. crassispinus throughout the evaluation period. Then, when dealing with a replanting area of Pinus plantation, where the previous forest has not been subject to pruning nor thinning, the problem with A. crassispinus is almost null if the clearcutting and the new planting occur during the winter. In this case, leaf-cutting ants control can be alleviated and it is not necessary to carry out systematic control of ants where A. crassispinus is the predominant leaf cutting ant species. Acromyrmex crassispinus control should be done only if nests are located or if attacked plants by ants are detected.


Sociobiology ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 415
Author(s):  
Yamileth Domínguez-Haydar ◽  
Bleydis Gutierrez-Rapalino ◽  
Juan Jose Jiménez

In this study, the spatial pattern of two ant species of different feeding habits, Ectatomma ruidum and Pheidole fallax (Hymenoptera: Formicidae) was assessed in rehabilitated areas of “Cerrejón” coal mine (Colombia). We tested whether there is a relationship between spatial distribution pattern, age rehabilitation and temporal changes. Three sites with different ages of rehabilitation (1, 9 and 20 years) and a secondary forest were sampled during dry and rainy seasons. Within four plots (6 x 40m) per site, we located, counted and estimated the minimum distance among nests. Our results indicated that the number of active nests varied according to sites and sampling season, E. ruidum had the highest density at both seasons, 166 nests ha-1 (forest) and 1333 nests ha-1 (9-y site). The nest density for P. fallax ranged between 125 and 625 nests ha-1 in the forest and the 20-y site, respectively, and at 1-year site ants were absent. Our results indicated that the nest distribution strongly depended on the scale of observation. A uniform distribution pattern was also found, mainly at the local scale (plot level), while an aggregated and random distribution was found at the site level. We conclude that ant density responded mostly to seasonal changes (dry versus wet season).


Sociobiology ◽  
2014 ◽  
Vol 61 (4) ◽  
Author(s):  
Jose Octavio Macias-Macias ◽  
Javier Quezada-Euan ◽  
Jose Maria Tapia-Gonzalez ◽  
Francisca Conteras-Escareño

2016 ◽  
Vol 3 (5) ◽  
pp. 160073 ◽  
Author(s):  
Kevin Li ◽  
John H. Vandermeer ◽  
Ivette Perfecto

Spatial patterns in ecology can be described as reflective of environmental heterogeneity (exogenous), or emergent from dynamic relationships between interacting species (endogenous), but few empirical studies focus on the combination. The spatial distribution of the nests of Azteca sericeasur , a keystone tropical arboreal ant, is thought to form endogenous spatial patterns among the shade trees of a coffee plantation through self-regulating interactions with controlling agents (i.e. natural enemies). Using inhomogeneous point process models, we found evidence for both types of processes in the spatial distribution of A. sericeasur . Each year's nest distribution was determined mainly by a density-dependent relationship with the previous year's lagged nest density; but using a novel application of a Thomas cluster process to account for the effects of nest clustering, we found that nest distribution also correlated significantly with tree density in the later years of the study. This coincided with the initiation of agricultural intensification and tree felling on the coffee farm. The emergence of this significant exogenous effect, along with the changing character of the density-dependent effect of lagged nest density, provides clues to the mechanism behind a unique phenomenon observed in the plot, that of an increase in nest population despite resource limitation in nest sites. Our results have implications in coffee agroecological management, as this system provides important biocontrol ecosystem services. Further research is needed, however, to understand the effective scales at which these relationships occur.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Author(s):  
Clifford S. Rainey

The spatial distribution of V and Ni deposited within fluidized catalytic cracking (FCC) catalyst is studied because these metals contribute to catalyst deactivation. Y zeolite in FCC microspheres are high SiO2 aluminosilicates with molecular-sized channels that contain a mixture of lanthanoids. They must withstand high regeneration temperatures and retain acid sites needed for cracking of hydrocarbons, a process essential for efficient gasoline production. Zeolite in combination with V to form vanadates, or less diffusion in the channels due to coke formation, may deactivate catalyst. Other factors such as metal "skins", microsphere sintering, and attrition may also be involved. SEM of FCC fracture surfaces, AEM of Y zeolite, and electron microscopy of this work are developed to better understand and minimize catalyst deactivation.


Sign in / Sign up

Export Citation Format

Share Document