Protective effects of extracts of lichen Dirinaria consimilis (Stirton) D.D. Awasthi in bifenthrin- and diazinon-induced oxidative stress in rat erythrocytes in vitro

Author(s):  
Vinay Bharadwaj Tatipamula ◽  
Biljana Kukavica
2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


2021 ◽  
pp. 153537022110091
Author(s):  
Yanhong Si ◽  
Hua Tian ◽  
Bingqing Dong ◽  
Ying Zhang ◽  
Yuanyuan Wen ◽  
...  

Oxidative stress and inflammation are closely related to atherosclerotic cardiovascular disease. It is established that hydrogen has significant protective effects on many diseases as a potential antioxidative and anti-inflammatory agent. The purpose of this study is to evaluate the effect of hydrogen on unstable angina in vitro and in vivo. An atherosclerosis model in vitro was constructed by ox-LDL-induced injury of human umbilical vein endothelial cells and in vitro testing indicated hydrogen inhibited ox-LDL-induced oxidative stress and inflammatory response by down-regulating LOX-1/NF-kB signaling pathway. Subsequently, the attenuating effect of hydrogen-rich water intake on unstable angina was further confirmed in clinic. Forty hospitalized subjects with unstable angina were enrolled and consumed either 1000–1200 mL/d hydrogen-rich water or the same amount of placebo pure water in addition to conventional drugs for three months. Clinical analysis showed hydrogen-rich water intake relieved angina symptoms in unstable angina patients. Serum analysis showed that hydrogen-rich water addition resulted in more effective reductions of total-cholesterol, low-density lipoprotein-cholesterol, and apolipoprotein B levels compared with conventional treatment. These results support that hydrogen as adjuvant treatment has a beneficial effect on unstable angina.


2016 ◽  
Vol 35 (12) ◽  
pp. 1252-1263 ◽  
Author(s):  
SS Palabiyik ◽  
E Karakus ◽  
Z Halici ◽  
E Cadirci ◽  
Y Bayir ◽  
...  

Acetaminophen (APAP) overdose could induce liver damage and lead to acute liver failure. The treatment of APAP overdoses could be improved by new therapeutic strategies. Thymus spp., which has many beneficial effects and has been used in folk medicine, is one such potential strategy. In the present study, the hepatoprotective activity of the main constituents of Thymus spp., carvacrol and thymol, were evaluated in light of APAP-induced hepatotoxicity. We hoped to understand the hepatoprotective mechanism of these agents on the antioxidant system and pro-inflammatory cytokines in vitro. Dose-dependent effects of thymol and carvacrol (25, 50, and 100 µM) were tested on cultured HepG2 cells. N-Acetylcysteine (NAC) was tested as positive control. We showed that APAP inhibited HepG2 cell growth by inducing inflammation and oxidative stress. Incubating APAP-exposed HepG2 cells with carvacrol and thymol for 24 h ameliorated this inflammation and oxidative stress. We also evaluated alanine transaminase and lactate dehydrogenase levels of HepG2 cells. We found that thymol and carvacrol protected against APAP-induced toxicity in HepG2 cells by increasing antioxidant activity and reducing pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β. Taking together high-dose thymol and carvacrol treatment has an effect close to NAC treatment in APAP toxicity, but thymol has better treatment effect than carvacrol.


Author(s):  
Daisy Liu

Snow fungus, Tremella fuciformis, has been demonstrated to have numerous health benefits including purported chemopreventive properties due to free radical-scavenging ability. Protective effects derived from snow fungus polysaccharides are evaluated on Chinese hamster lung fibroblasts (CCL-39) exposed to carcinogen benzo[a]pyrene known to cause free radical formation and oxidative stress to cells. In this experiment, it was hypothesized that the naturally occurring polysaccharides in snow fungus are able to protect against or reduce oxidative stress-induced DNA damage. Polysaccharides were isolated through an alkaline extraction and in-vitro digestion. DNA damage was measured using the single-cell gel electrophoresis comet assay after exposure to benzo[a]pyrene and polysaccharide extract to lung fibroblasts. Results were calculated using the mean and standard deviation data of tail length and area, respectively. Each damaged cell was measured and analyzed through ImageJ Editing Software. The results indicate a promising trend which depict snow fungus polysaccharides yielding lower levels of DNA damage compared to cells exposed to benzo[a]pyrene and compared to the negative control (phosphate buffered saline and Dulbecco’s cell medium). This study suggests polysaccharides from Tremella fuciformis could truly prevent cellular DNA damage by protecting against oxidative stress.


2021 ◽  
Author(s):  
Chitra Jairaman ◽  
Sabine Matou-Nasri ◽  
Zeyad I Alehaideb ◽  
Syed Ali Mohamed Yacoob ◽  
Anuradha Venkataraman ◽  
...  

Abstract The bark extract of Rhizophora mucronata (BERM) was recently reported for its prominent in vitro protective effects against liver cell line toxicity caused by various toxicants, including ethanol. Here, we aimed to verify the in vivo hepatoprotective effects of BERM against ethanol intoxication. An oral administration of different concentrations (100, 200, and 400 mg/kg) of BERM prior to high-dose ethanol via intraperitoneal injection was performed in mice. On the 7th day, liver and kidney sections were dissected out for histopathological examination. The ethanol intoxication caused large areas of liver necrosis while the kidneys were not affected. Pre-BERM administration decreased ethanol-induced liver injury, as compared to the mice treated with ethanol alone. In addition, the pre-BERM administration resulted in a decrement in the level of ethanol-induced oxidative stress, revealed by a concomitant increase of GSH and a decrease of MDA hepatic levels. The BERM extract also reversed the ethanol-induced liver injury and hepatotoxicity, characterized by the low detection of TNF-α gene expression level and fragmented DNA, respectively. Altogether, BERM extract exerts antioxidative activities and present promising hepatoprotective effects against ethanol intoxication. The identification of the related bioactive compounds will be of interest for future use at physiological concentrations in ethanol-intoxicated individuals.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kaifeng Li ◽  
Mengen Zhai ◽  
Liqing Jiang ◽  
Fan Song ◽  
Bin Zhang ◽  
...  

Hyperglycemia-induced oxidative stress and fibrosis play a crucial role in the development of diabetic cardiomyopathy (DCM). Tetrahydrocurcumin (THC), a major bioactive metabolite of natural antioxidant curcumin, is reported to exert even more effective antioxidative and superior antifibrotic properties as well as anti-inflammatory and antidiabetic abilities. This study was designed to investigate the potential protective effects of THC on experimental DCM and its underlying mechanisms, pointing to the role of high glucose-induced oxidative stress and interrelated fibrosis. In STZ-induced diabetic mice, oral administration of THC (120 mg/kg/d) for 12 weeks significantly improved the cardiac function and ameliorated myocardial fibrosis and cardiac hypertrophy, accompanied by reduced reactive oxygen species (ROS) generation. Mechanically, THC administration remarkably increased the expression of the SIRT1 signaling pathway both in vitro and in vivo, further evidenced by decreased downstream molecule Ac-SOD2 and enhanced deacetylated production SOD2, which finally strengthened antioxidative stress capacity proven by repaired activities of SOD and GSH-Px and reduced MDA production. Additionally, THC treatment accomplished its antifibrotic effect by depressing the ROS-induced TGFβ1/Smad3 signaling pathway followed by reduced expression of cardiac fibrotic markers α-SMA, collagen I, and collagen III. Collectively, these finds demonstrated the therapeutic potential of THC treatment to alleviate DCM mainly by attenuating hyperglycemia-induced oxidative stress and fibrosis via activating the SIRT1 pathway.


2020 ◽  
Vol 21 (16) ◽  
pp. 5825 ◽  
Author(s):  
Amanda Kristiansson ◽  
Sara Davidsson ◽  
Maria E. Johansson ◽  
Sarah Piel ◽  
Eskil Elmér ◽  
...  

Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.


2018 ◽  
Vol 37 (12) ◽  
pp. 1268-1281 ◽  
Author(s):  
A Ahangarpour ◽  
S Alboghobeish ◽  
AA Oroojan ◽  
MA Dehghani

The growing use of carbon nanotubes (CNTs) emphasizes the importance of its potential toxic effects on the human health. Previous studies proved that CNTs caused oxidative stress and decreased cell viability. On the other hand, reactive oxygen species (ROS) and oxidative stress impaired β-cell functions and reduced the insulin secretion. However, there is not any study on the effects of CNTs on islets and β-cells. Therefore, the present study aimed to evaluate the effects of single-walled CNTs (SWCNTs) on oxidative stress in islets in addition to the protective effects of naringin (NRG) as an antioxidant . We examined the effects of SWCNTs and naringin on islets by 3,4 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay; measurement of insulin secretion, ROS, and malondialdehyde (MDA); activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) peroxidase (GSH-Px); and content of GSH and mitochondrial membrane potential (MMP). The MTT assay demonstrated that decreased viability of islets cells was dose-dependent with exposure to SWCNTs. Further studies revealed that SWCNTs decreased insulin secretion and MMP, induced the formation of ROS, increased the level of MDA, and decreased the activities of SOD, GSH-Px, and CAT and content of GSH. Furthermore, the pretreatment of islets with naringin significantly reverted back these changes. These findings revealed that SWCNTs might induce the oxidative stress to pancreatic islets, causing the occurrence of diabetes, and the protective effects of naringin that was mediated by augmentation of the antioxidant defense system of islets. Our research indicated the necessity for further in vivo and in vitro researches on the effects of SWCNTs and naringin on diabetes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan-Yan Meng ◽  
Yu-Pei Yuan ◽  
Xin Zhang ◽  
Chun-Yan Kong ◽  
Peng Song ◽  
...  

Oxidative stress and cardiomyocyte apoptosis play critical roles in the development of doxorubicin- (DOX-) induced cardiotoxicity. Our previous study found that geniposide (GE) could inhibit cardiac oxidative stress and apoptosis of cardiomyocytes but its role in DOX-induced heart injury remains unknown. Our study is aimed at investigating whether GE could protect against DOX-induced heart injury. The mice were subjected to a single intraperitoneal injection of DOX (15 mg/kg) to induce cardiomyopathy model. To explore the protective effects, GE was orally given for 10 days. The morphological examination and biochemical analysis were used to evaluate the effects of GE. H9C2 cells were used to verify the protective role of GE in vitro. GE treatment alleviated heart dysfunction and attenuated cardiac oxidative stress and cell loss induced by DOX in vivo and in vitro. GE could activate AMP-activated protein kinase α (AMPKα) in vivo and in vitro. Moreover, inhibition of AMPKα could abolish the protective effects of GE against DOX-induced oxidative stress and apoptosis. GE could protect against DOX-induced heart injury via activation of AMPKα. GE has therapeutic potential for the treatment of DOX cardiotoxicity.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Longlong Li ◽  
Yao Yao ◽  
Zhihao Jiang ◽  
Jinlong Zhao ◽  
Ji Cao ◽  
...  

Dehydroepiandrosterone (DHEA) is a popular dietary supplement that has well-known benefits in animals and humans, but there is not enough information about the mechanisms underlying its effects. The present study aimed at investigating these mechanisms through in vitro experiments on the effects of DHEA on rat liver BRL-3A cells exposed to oxidative stress through H2O2. The findings showed that DHEA increased the antioxidant enzyme activity, decreased ROS generation, and inhibited apoptosis in H2O2-treated cells. These effects of DHEA were not observed when the cells were pretreated with known antagonists of sex hormones (Trilostane, Flutamide, or Fulvestrant). Furthermore, treatment with estradiol and testosterone did not have the same protective effects as DHEA. Thus, the beneficial effects of DHEA were associated with mechanisms that were independent of steroid hormone pathways. With regard to the mechanism underlying the antiapoptotic effect of DHEA, pretreatment with DHEA was found to induce a significant decrease in the protein expression of Bax and caspase-3 and a significant increase in the protein expression of PI3K and p-Akt in H2O2-treated BRL-3A cells. These effects of DHEA were abolished when the cells were pretreated with the PI3K inhibitor LY294002. No changes were observed on the p-ERK1/2, p-p38, and p-JNK protein levels in H2O2-induced BRL-3A cells pretreated with DHEA. In conclusion, our data demonstrate that DHEA protects BRL-3A cells against H2O2-induced oxidative stress and apoptosis through mechanisms that do not involve its biotransformation into steroid hormones or the activation of sex hormone receptors. Importantly, the protective effect of DHEA on BRL-3A cells was mainly associated with PI3K/Akt signaling pathways, rather than MAPK signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document