Arsenic uptake, distribution, and accumulation in bean plants: Effect of Arsenite and salinity on plant growth and yield

1997 ◽  
Vol 20 (10) ◽  
pp. 1419-1430 ◽  
Author(s):  
Angel A. Carbonell‐Barrachina ◽  
Francisco Burló‐Carbonell ◽  
Jorge Mataix‐Beneyto
1995 ◽  
Vol 18 (6) ◽  
pp. 1237-1250 ◽  
Author(s):  
A. Carbonell Barrachina ◽  
F. Burlo Carbonell ◽  
J. Mataix Beneyto

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 149 ◽  
Author(s):  
Angela G. Mkindi ◽  
Yolice L. B. Tembo ◽  
Ernest R. Mbega ◽  
Amy K. Smith ◽  
Iain W. Farrell ◽  
...  

Common bean (Phaseolus vulgaris) is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests. However, reducing common bean yield gaps still requires further sustainable solutions to other crop provisioning services such as soil fertility and plant nutrition. Smallholder farmers using pesticidal plants have claimed that the application of pesticidal plant extracts boosts plant growth, potentially through working as a foliar fertiliser. Thus, the aims of the research presented here were to determine whether plant growth and yield could be enhanced and which metabolic processes were induced through the application of plant extracts commonly used for pest control in eastern Africa. Extracts from Tephrosia vogelii and Tithonia diversifolia were prepared at a concentration of 10% w/v and applied to potted bean plants in a pest-free screen house as foliar sprays as well as directly to the soil around bean plants to evaluate their contribution to growth, yield and potential changes in primary or secondary metabolites. Outcomes of this study showed that the plant extracts significantly increased chlorophyll content, the number of pods per plant and overall seed yield. Other increases in metabolites were observed, including of rutin, phenylalanine and tryptophan. The plant extracts had a similar effect to a commercially available foliar fertiliser whilst the application as a foliar spray was better than applying the extract to the soil. These results suggest that pesticidal plant extracts can help overcome multiple limitations in crop provisioning services, enhancing plant nutrition in addition to their established uses for crop pest management.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 222
Author(s):  
Abdulaziz A. Al-Askar ◽  
WesamEldin I. A. Saber ◽  
Khalid M. Ghoneem ◽  
Elsayed E. Hafez ◽  
Amira A. Ibrahim

Presently, the bioprocessing of agricultural residues to various bioactive compounds is of great concern, with the potential to be used as plant growth promoters and as a reductive of various diseases. Lycopersiconesculentum, one of the most consumed crops in the human diet, is attacked by Fusarium wilt disease, so the main aim is to biocontrol the pathogen. Several fungal species were isolated from decayed maize stover (MS). Trichodermaasperellum was chosen based on its organic acid productivity and was molecularly identified (GenBank accession number is MW195019). Citric acid (CA) was the major detected organic acid by HPLC. In vitro, CA of T.asperellum at 75% completely repressed the growth of Fusariumoxysporum f. sp. lycopersici (FOL). In vivo, soaking tomato seeds in CA enhanced the seed germination and vigor index. T. asperellum and/or its CA suppressed the wilt disease caused by FOL compared to control. There was a proportional increment of plant growth and yield, as well as improvements in the biochemical parameters (chlorophyll pigments, total phenolic contents and peroxidase, and polyphenol oxidase activities), suggesting targeting both the bioconversion of MS into CA and biological control of FOL.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Aung Zaw Htwe ◽  
Seinn Moh Moh ◽  
Khin Myat Soe ◽  
Kyi Moe ◽  
Takeo Yamakawa

The use of biofertilizers is important for sustainable agriculture, and the use of nodule bacteria and endophytic actinomycetes is an attractive way to enhance plant growth and yield. This study tested the effects of a biofertilizer produced from Bradyrhizobium strains and Streptomyces griseoflavus on leguminous, cereal, and vegetable crops. Nitrogen fixation was measured using the acetylene reduction assay. Under N-limited or N-supplemented conditions, the biofertilizer significantly promoted the shoot and root growth of mung bean, cowpea, and soybean compared with the control. Therefore, the biofertilizer used in this study was effective in mung bean, cowpea, and soybean regardless of N application. In this study, significant increments in plant growth, nodulation, nitrogen fixation, nitrogen, phosphorus, and potassium (NPK) uptake, and seed yield were found in mung beans and soybeans. Therefore, Bradyrhizobium japonicum SAY3-7 plus Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus are effective bacteria that can be used together as biofertilizer for the production of economically important leguminous crops, especially soybean and mung bean. The biofertilizer produced from Bradyrhizobium and S. griseoflavus P4 will be useful for both soybean and mung bean production.


Sign in / Sign up

Export Citation Format

Share Document